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ABSTRACT

Aircraft turnaround operations involve all services to an aircraft (e.g. passenger boarding/disembarking,
re-fuelling, deicing) between its arrival and immediately following departure. The aircraft, parked at its
stand, witnesses a number of service providers move around it to perform their duties. These companies
run substantially independent operations, working for different airlines/flights within a confined area where
many resources, including physical space itself, have inescapably to be shared. Inter-dependencies among
service providers abound, and knock-on effects at disrupted times are rife. Coordination from the side of
the airport operator is difficult. We envisage a tactical robust scheme whereby ground handlers and the
airport operator cooperate, albeit indirectly, in the development of plans for the next day that are less likely
to be impacted by at least the more frequent operational disruptions. The scheme is based on a simheuristic
approach which integrates ad-hoc heuristics with a hybrid simulation model (agent-based/discrete-event).

1 MOTIVATION

Demand for commercial air transport continues to grow. Passenger volume grew globally 7.1% in 2016
(IATA 2017) and is expected to more than double by 2035 (IATA 2017), which will require a strong
infrastructure and operational efficiency. Additionally, there is a push to move to aircraft 4D trajectory
in the US NextGen and Single European Sky initiatives, in which aircraft movement would no longer be
restricted to the current node to node concept, but could exist in any xyz space coordinate at any time. This
would increase the capacity of aircraft in the airspace (Schultz 2018) tremendously, adding to the need to
optimize ground operational efficiency for the turnaround of aircraft in between ever more frequent flights.

Ground handling consists of all of the processes that occur between the time that the aircraft reaches the
allocated ’block’ at the airport (i.e. its parking stand/position) and the time at which the aircraft departs for
its next flight. This has been deemed the second most common reason for delays to flights (Van Leeuwen
and Witteveen 2009), which means that ground handling service providers (SPs) are in need of support to
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optimally plan their operations. The focus of this research is directed at the daily assignment of teams to
handle these operations in a tactical and robust nature. It is considered ’tactical’ because the assignment is
completed ahead of the day of operation. The plan is expected to be ‘robust’ as the uncertain elements of
this process are taken into consideration in the assignment procedure, in a way that will be described later.

2 BACKGROUND

Every day, a multitude of flights arrive and depart from commercial airports. Each flight requires a
‘turnaround process’ where several operations must be completed, such as baggage loading/unloading,
fuelling, and pushing back into the taxiway. Additional activities, such as cleaning, catering, and the
transport of passengers with reduced mobility, are also required for many flights. All these operations
are completed/supervised by teams of ground handlers, working for different SPs. Recent research on the
turnaround process can be found in: (Dohn et al. 2008); (Padron et al. 2016); (Fitouri-Trabelsi et al. 2013);
(Andreatta et al. 2014); (Mota et al. 2017); (Norin et al. 2009) and (Wu 2008).

Airport operations get disrupted all the time, due to e.g. weather, technical faults such as passenger
terminal black-outs, terrorism (McDonnell 2014), or simply inefficiencies, including in ground handling.
Moreover, there is increasing competition in ground handling due to the now established deregulation, thus
lowering the market entry costs(Padron et al. 2016). To keep up with the dynamic schedule of flights each
day, there are two decision points that SPs must consider. First, there is the turnaround process itself, as
there are dependencies in the order in which processes can happen. The other decision is the assignment
of turnaround teams to flights, together with the needed physical assets, called Ground Service Equipment
(GSE), such as passenger stairs, baggage loading/unloading conveyor belts, etc. This paper focuses on
team assignments; some related literature also consider the allocation of GSE (Andreatta et al. 2014).

Tactically, SPs will plan their operations up to a month in advance, based on the expected flight
schedules; however, daily disruptions require a process to re-plan the allocation of ground handling teams
(Padron et al. 2016) just before the day of operation. Literature on the topic supports single SPs to develop
tactical team assignments. What it does not consider in doing so, to our knowledge, are key elements that
are out of the control for the single SP, in particular: (1) the tactical plans developed by the other SPs
operating at the same airport, and their impact on the dynamics of ground handling on the day of operation;
and (2) uncertain aspects of aircraft turnaround operations, such as duration of specific turnaround tasks,
uncertain times of aircraft arrival to stand, availability of GSE when needed, etc. This paper presents an
idea for how to include these two aspects in tactical planning of turnaround teams by the single SP.

3 PROBLEM STATEMENT AND FORMULATION

In this section we formulate the Turnaround-Team Assignment Problem (T-TAP) - see (1) to (8), inspired
by (Andreatta et al. 2014), which however focuses on allocation of GSEs to aircraft turnarounds (GSE
Assignment Problem, or GAP). We are at a given airport and look at the tactical planning problem whereby
all teams of handlers, simply ’teams’, of a given SP, are assigned to aircraft turnaround tasks, "tasks’ for
short, for the entire duration of the day of operation. The allocation is devised ahead of the day of operation,
say in the night-time gap between two consecutive days.

The model seeks a plan that minimizes (1) the total delays associated with team-task allocations that,
at the planning stage, appear unlikely to be able to start on time. A delay cl’?j > 0 will be incurred if team

h is allocated to task j after completion of task i, that is if xf’/. =1, despite the guesstimate that the aircraft
associated with task j is likely to reach its destination stand prior to the moment when team # is available
at the same stand, ready to cater for it. This 'moment’ is calculated as the sum of the expected time of
team h departing from the stand where they completed task i, plus the time for the same team to move to
the stand of task j, plus the time to set up the destination stand for the next turnaround to start (11).

The sets of all teams and all tasks are denoted as H and K respectively, while expected start and end
times for task i € K are denoted as s; and e¢;. We adopt symbols A;, and €, to denote ‘dummy’ tasks, one
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each for the beginning and the end of the day/shift respectively, to represent that each team start and end
their job from the operational base/office of the SP at the given airport. Our decision variable xfzj is binary.
The T-TAP can be then formulated as:

minZZ Z cf?jxff/ (D

heH i€k jek, j#i

subject to:
Y Yl =1Vjek\{A :l€H} 2
heH icK
Y &, =1VheH 3)
jek
Y =Y xh,=0Vie K\{A,:Q4},h€h} )
veK weK
Y o, =1VheH &)
ieK
< ohvijeKheH (©)
X <ALvijeK,heH @)
x;€{0,1} Vi,jeK,heH (8)

Constraint (2) ensures that all tasks are completed exactly once. Constraints (3)-(5) ensure that each
team starts from the related initial dummy task and completes the working shift at the related final dummy
task, whilst passing through a feasible sequence of actual tasks in between. Constraints (6) and (7) include
binary parameters to restrict the compatibility of team 4 with specific sub-sequences of tasks i — j. As (9)
shows, a sub-sequence i — j is inhibited from being assigned to team # if either of the following is true:
(a) if i = j; or (b) if team h cannot feasibly travel from the stand of task i to the stand of task j within a
set buffer time € from the planned start of task j.

0 ifi=jVijeKk,
n=120 ife+tli+e<s;, )
1 otherwise.

All other reasons that inhibit sub-sequence i — j from being assigned to team 4 are captured by (10),
e.g. all flights of the same airline at a given airport are generally serviced by teams of the same SP.
M} _ 0 ifhis i.ncompatible with j, (10)

1 otherwise.
Finally, (11) defines the cost parameter of the objective function, that is delay cﬁ’j, where: f3, labels the
physical location of ‘the office’ of the given SP, at the given airport; tl’;hl. denotes the travel time for team

h to move from its own office to the stand where the same team will execute task i; ti%; denotes the travel

time for team % to move from the stand where they just completed task i, back to its own office; and 8" is
a parameter representing the average time for team £ to be ready to start a task, from the moment when it
arrives at the designated stand.

¢l = max (o,e,-+t§;3h +z’,;hj+6h —5j) (11)
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Solving the T-TAP efficiently/quickly is quite hard. This is because the T-TAP is modelled after the
GAP, the computational intractability of which is discussed in (Andreatta et al. 2014). Our observations
from working with many airports over the past decade, in the UK and the EU, confirm that practitioners
do solve the T-TAP by following various forms of ad-hoc heuristic reasoning. A simple rule frequently
adopted by ground handling service providers is the FCFS (First-Come-First-Served), whereby teams are
allocated to tasks one after another, following the order of arrival of the related flights at the planned stand.

The reality of air side operations at most commercial airports of interest is that the complexity and
uncertainty characterising their operational environments are such that, quite quickly into the day of
operations, most of the tactical plans developed for the day become unfeasible to follow. This is true for
planning turnaround teams as it is for planning GSEs and airport resources in general. Many SPs respond
to this by developing a tactical plan only for the start of the day, often covering only until the end of the
‘first wave’ of morning flights. This makes sense as in many airports the first wave is one of the peak daily
periods in terms of traffic intensity. Then, throughout the rest of the day, operations are typically just 'run’,
with teams assigned as the necessity arises, following some given operational rules. A more structured,
approach is to look from the outset at the development of tactical plans that are somewhat ’robust’. A
robust tactical plan would be one that performs better at standing the test of time on the day of operation.

The very nature of the T-TAP itself does not, however, allow to develop the intended robust plans,
simply because all its main parameters are deterministic, especially those mentioned in (11). In this paper,
we devise a scheme that enables the development of robust plans by each SP, where we integrate the
solution of the deterministic T-TAP optimization problem with the assessment, through simulation, of the
robustness of the developed solution.

4 THE SYSTEMATIC TURNAROUND-TEAM ALLOCATION ROUTINE

In this section, a process is proposed that involves all the SPs working at the given airport and the airport
operator (AO) running the same facility. The purpose of this process is to support each SP separately to
develop tactical plans for team allocation and assess their robustness. The latter is achieved by quantifying
the likely delays to be incurred by each SP on the next day of operation, if their plan was enacted as
envisaged. This would in turn lead to an estimation of the likely impact of any such delays on the Service
Level Agreements (SLAs) in place between SPs and the airlines/the AO. We call this process STTAR,
acronym standing for Systematic Turnaround-Team Allocation Routine - see Figure 1.

Let us assume that, as is often the case, SPs plan and run their operations for the next day independently
from one another, and that they employ totally disjointed fleets of GSE. Let us also assume that there
exists a ’central computing facility’ at the given airport, on which a sufficiently detailed and validated
simulation model of ground handling operations at the same airport is available. We assume that this model
is perceived as credible by both SPs and the AO. Let us finally assume that, between two consecutive days
of operations, there exists a night-time window during which the STTAR process can take place. During
this period, the process itself evolves in two subsequent phases.

In "Phase 1°, each SP can submit to the central computer its intended tactical plan for the next (whole)
day, in which all of its teams on shift are allocated to some tasks. After the submission by the single
SP, which we call SP X, the simulation model is run for a known number of independent replications.
The model mimics the allocation plan submitted by the same SP. It also reproduces tactical plans for the
remaining SPs, say SPs Y, Z, etc. A range of such plans are simulated, so that interaction between the
plan submitted by X and meaningful combinations of the plans to be possibly enacted by Y, Z, etc. can
be estimated. The simulation model also uses distributions to model other relevant stochastic aspects such
as turnaround task duration, aircraft arrivals/departures, availability of GSEs and teams, etc. Assumptions
around the possible tactical plans of SPs Y, Z, etc. can be easily developed based on previous submissions
by these SPs to the central system. Assumptions around the statistical distributions that model all relevant
stochastic aspects of the given airport can be derived, as we did, from historical data.
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Figure 1: A simplified process map for STTAR, with tentative example timings.

After running Phase 1 simulations, simplified descriptive statistics of the likely performance of each
single SP, e.g. ranges for the expected number and duration of the delays occurred in their own turnarounds,
are computed and sent back to the SP. The SP can then reflect upon the obtained feedback, and possibly
test other alternative plans for the next day. A cap to the total number of submissions by the same SP may
apply, e.g. three in the example case of Figure 1. We assume that the SPs cannot access the simulation
model directly, but can only upload their own tactical plans, one at a time, independently from one another.
We also assume that no visibility exists of other SPs’ submitted plans and, quite naturally so, of the results
obtained by other SPs’ at each submission. Exclusivity of data is vital to this process so that ground
handling companies do not share data that is paramount to their competitive advantage.

Each SP benefits from participation to Phase 1 in that they obtain context information, albeit simplified,
concerning the likely ’robustness’ of the intended tactical plan for their own teams, over the next day
of operation. Phase 2 of STTAR will offer benefits that are similar in nature, but will add optimization
steps that are intertwined with the simulation runs, in the hope that even more robust tactical plans can be
developed and suggested to the SPs for possible consideration. The robustness in Phase 2 will however
be computed for the airport as a whole, as opposed to being computed separately for each single SP. As
discussed in details in the next section, Phase 2 is meant to be even more highly automated. For this purpose,
two alternative simulation-optimization procedures, both of which can be classified as simheuristics (Juan
et al. 2015), were developed and will be discussed in the next section.

S SIMHEURISTICS-ENABLED TACTICAL ROBUST PLANNING

Phase 1 ends at a set time in the considered night-time window - say 2:00am in the example of Figure 1.
Then, one tactical plan per SP will be locked-in to be taken into Phase 2 as part of the ’initial solution’ -
see Figure 2. Locked-in plans can be, according to choices made by each single SP, either their *preferred
plan’ among those tested in Phase 1, or a different plan altogether, if they wish so. Because it is SPs,
ultimately, that decide what plan of action to follow, when the day starts. The locked-in plans as confirmed
by the SPs, either explicitly or implicitly, and are then collated by the central computer, to form the ‘initial
solution’ for the problem of Phase 2. This initial solution includes feasible allocations to all teams of all
SPs to all turnaround tasks, throughout the day of operation that is about to start.
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During Phase 2, the overall expected delays, from the airport’s perspective, will be minimized, whilst
ensuring minimum levels of robustness. This is achieved first by solving a (deterministic) T-TAP for the
whole airport, through a combination of heuristics developed ad-hoc for the problem. After that, simulation
is employed to test the robustness of the overall set of team allocations across all SPs. We propose and test
two alternative ways for intertwining the heuristic reasoning component with the simulation component of
our approach, shown in Figure 2 as Phase 2a and 2b respectively.

In option 2a, we allow for up to V| iterations of the heuristic search, before we take the best solution found
up to that point to the subsequent stochastic simulation stage, where estimates for a set of robustness-related,
relevant performance indicators are computed. Should the robustness of the overall plan be considered
unsatisfactory, e.g. because a set of SLAs are not met, we allow for up to N iterations of the whole
procedure, thus restarting from the heuristic search once again.

The question of what notion of/metric for robustness should be adopted can be developed in many
different ways (Bertsimas and Sim 2004). Here, our robustness metric of choice is the expected total
number of turnaround delays over the day of operation, which has to fall below a percentage threshold of
the number of flights in a day. The threshold itself is then a problem parameter; different thresholds could
be set for different SPs, as well as for the airport overall. Alternatively, one could focus on the magnitude
of turnaround delays themselves as another measure of robustness in this context, but other choices can be
made as well.

In option 2b, at each iteration of the heuristic search procedure, we run shorter stochastic simulations,
the results of which are used to decide on whether the current best solution needs updating. After that,
the best solution is tested for robustness, based on the exact same performance indicators employed in
option 2a. In the case when the robustness of the plan is considered unsatisfactory, we allow for up to N3
iterations of the whole procedure, at the end of which we run a final stochastic simulation to compute a
wider range of performance indicators, before these are fed back to the SPs.

At the end of either option, the SPs will then have information at their disposal, to inform their final
choice of team allocation plan for the next day of operation.

5.1 Stochastic elements of the problem and the role of simulation

There are four main elements of the problem that, at the end of the day of operation, will have impacted
most significantly the operational performance of the system. They are: (1) actual flight arrival times on
stand; (2) duration of turnaround operations; (3) team-task allocations; and (4) GSE-task allocations.

While (1) is totally out of the control of SPs, the variability inherent to (2) can only be partially
controlled by them. First, because not all the activities in the turnaround task will be executed by the same
SP. For instance, while operations such as baggage loading/unloading and passenger boarding/disembarking
are executed by the SP, other operations, such as re-fuelling or toilet cleaning, are generally provided by
other SPs that specialize in such services. Coordination among SPs involved in the turnaround of the same
aircraft, and beyond, is then paramount. Other aspects of the problem that impact the variability in the
duration of turnaround activities and that is out of the control of the main SP are e.g. the actual number
of outbound/inbound passengers, of outbound/inbound pieces of baggage, etc., which vary even for the
same flight on different dates. Finally, additional elements of variability in processing times are directly
connected to the way operations are actually executed by the different teams of the many SPs.

Element (3) above is more controllable by SPs and is in fact the focus of the T-TAP as defined above.
Finally, element (4) is very often the subject of its own planning problem, similar to the T-TAP, as in
(Andreatta et al. 2014). In Phase 2 of STTAR, elements (1), (2) and (4) are modelled as uncertain factors
and considered during the simulation runs in which a number of alternative team-task assignment plans
are tested, as explained above.

The main novelty in our approach is neither in the use of heuristic search to solve the T-TAP (Andreatta
et al. 2014), nor in the way simulation and heuristic search are intertwined in 2a or 2b (Juan et al. 2015) in
a scheme going by the name of *Simheuristics’. On the other hand, and to the best of our knowledge, this
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paper is the first applying Simheuristic schemes to the tactical planning of turnaround teams, and one of a
very small number of works looking at turnaround team planning more in general (Ho and Leung 2010).

5.2 On developing an initial feasible solution

Both algorithms 2a and 2b make sure they can start from a feasible initial solution to the T-TAP, or in
general, with any feasible tactical plan for turnaround team allocations across all SPs. To ensure feasibility
of the initial solution considered, we developed a construction heuristic (a simplified version of the fast
construction heuristic in (Andreatta et al. 2014)), which is based on assigning tasks to teams as long as
they meet basic compatibility requirements, particularly in terms of maximum tolerable delays. Our ad-hoc
heuristic also provides a fast solution but, similarly to (Andreatta et al. 2014), not always a feasible one.
This means that our heuristic does not always provide a team assignment for every aircraft turnaround/task.
This happens especially when the time compatibility criterion is set to be too strict. In such a case, if there
are, for instance, five flights that are within a similar time window, with only four teams to allocate among
these flights, there would be one that would be left unassigned, which is not acceptable in practice. For
this reason, we developed an ad-hoc insertion heuristic. Our ’plan repair’ tactic in this algorithm seeks
to ensure feasibility whilst targeting a lower overall delay incurred over the day. For space reasons, we
do not provide the pseudo-code of either the construction or the insertion heuristic in this paper, but will
make them available on request.

5.3 Destroying and Repairing

As shown in Figure 2, and similarly to many existing approaches in the vast field of heuristics-/metaheuristics-
based search (Pisinger and Ropke 2010), a sequence of two steps is helpful to first ‘destroy’ and then ‘repair’
a solution already examined and transform it into a new solution to be taken to numerical examination. As
for the generation of the initial solution, our approach in both destroy and repair steps is very pragmatic.
The ‘destroy’ portion of our heuristic is simply based on choosing a turnaround task out of a limited number
of options and the removing the corresponding assignment to the team. The result of this process would
leave an infeasible solution, which can then undergo the same insertion process already mentioned above.
Our ‘destroy’ tactic identifies the task for removal by randomizing out of three options: (a) the task with
the largest delay; (b) the task directly preceding the one with the largest delay; and (c) a task at random.
Option (b) is similar to (a), but follows the idea that if the ’preceding task’ can be assigned to another team,
the total delay could be lowered overall, by helping to avoid at least a portion of the knock-on effects of
earlier delays.

6 NUMERICAL INVESTIGATION
6.1 Case study

For our numerical experiments, we studied the case of London Luton airport. From publicly available
data, we took Luton’s flight schedules of 2018, from which we ’extracted’ three daily schedules, that we
believed were representative of three very different workload levels for the airport (especially in terms
of total number of flights per day), and we labelled them ’Low’, ’Normal’ and 'Busy’ Day respectively.
Also from publicly available data, we took the aerial map of the airfield and worked out the positions of
all aircraft parking stands, as well as ground vehicle routes, etc. Again from public data sources, we got
to know that three SPs were operating in Luton at the time of the study, and the airlines whose flights
each of them serviced. Then, based on our previous simulation and optimization projects involving ground
handlers, we estimated the likely number of teams and GSEs for each SP at a general airport of the size
and operational characteristics of Luton. Also based on experience from previous projects at real airports
and working with ground handling SPs was the definition of the typical operational policies run by SPs
for an airport comparable to Luton. With this, we wish to acknowledge that ours is a realistic case study,
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whilst at the same time that none of the numbers we used in our simulation-optimization investigation were
provided directly by either the actual AO or SPs operating at Luton. As a result, the numbers discussed
below may not be representative of the actual performance of either the airport overall or of any of the SPs
operating at Luton in 2018.

6.2 Heuristics

In our Phase 1 experiments, in absence of SP-specific team allocation policies from the SPs operating at
the case study airport, we implemented the following three options for heuristic search:

Option H: This is the simple FCFS policy that many SPs implement in their operational planning;
Option AA: This simplified form of heuristic search runs (once) our construction heuristic, followed
by a single run of the insertion heuristic, to ensure feasibility of the plan;

e Option AA+: This algorithm looks very much like algorithm 2a, without either the simulation runs
or the robustness check - it basically represents a number of iterations of option AA.

In our Phase 1, we first ran each of the three options for each SP and the related teams/tasks, to determine
the related tactical plan. All 33 =27 possible combinations of plans were then simulated to determine the
operational performance. We also assumed that each SP would lock-in one of the three options for use at
the start of Phase 2.

6.3 Technical details

The construction, insertion and destroy and repair algorithms were implemented in the Eclipse IDE and
run on a laptop with 4 cores at 2.7GHz with 8GB of RAM, with the Apache POI library used for I/O
operations involving spreadsheets. The simulation model was developed as an agent-based/discrete-event
model in the Anylogic 8 University Edition software, and run on a workstation equipped with an Intel
Xeon processor at 3.4 GHz with 32GB of RAM. Algorithms 2a and 2b were implemented within Anylogic
itself, exploiting the Custom Experiment functionality of the software.

6.4 Parameter Settings

Through standard techniques of output data analysis (Law 2015), we determined that we needed 95
replications to build 90% confidence intervals for the performance indicators (KPIs) to be estimated during
the study, with a considered absolute error of f = 1 delay per day. The KPIs of choice were: number
of turnaround delays, duration of turnaround delays, number of team delays (i.e. number of times in a
day teams of the SP get late to the designated stand) and their duration. Of these KPIs, we computed
averages from the simulation replications and determined confidence intervals on the mean. We set the
number of replications equal to 95 in the experiments of Phase 1 as well as in the stages of Phase 2 labelled
’Simulation’ (2a) and ’Long Run Simulation’ (2b), while we set an arbitrary number of replications equal
to 15 for the *Short Run Simulation’ of Phase 2 - see Figure 2. (Juan et al. 2015) makes a similar choice
in relation to the number of replications for the ’short run’.

We set Nf = 100, N; = 10 in 2a and N; = 50 in 2b. We did not attempt to fine tune these parameters,
for the purpose of this paper. There can be a number of improvements added to future implementations.
For instance, in 2a one may add a stopping criterion that forces the exit from the inner loop if a better
solution is not found in a given amount of iterations, thus avoiding having to run the heuristic for N times.
Other improvements concerning the outer loop - which might not be obvious from Figure 2 - include e.g.
considering that if the next solution generated through destroy/repair has already been evaluated in the
past, its simulation should be skipped and a new destroy operation should be run.

Finally, the robustness threshold we set for our experiments was of 50% of the daily tasks being
delayed. This means that if a given solution taken to the robustness check leads to turnaround delays on
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Table 1: Sample Output from STTAR Phase 1

Options Num Num T/Round De- | T/Round De-
T/Round T/Round lay (Min) lay (Max)
Delay (Min) Delay (Max)
SP1 - Low Day
Option AA | 13.7 15.84 25.51 28.06
Option AA+ | 13.85 15.7 25.65 28.13
Option H 14.41 16.43 23.11 26.29
SP1 - Normal Day
Option AA | 16.99 19.36 30.81 34.17
Option AA+ | 16.53 19.18 31.63 35.57
Option H 16.88 18.97 28.84 33.59
SP1 - Busy Day
Option AA | 24.04 26.51 47.51 51.2
Option AA+ | 23.51 26.1 46.88 51.55
Option H 23.75 26.45 45.11 48.63

50% or less of the daily tasks at the given airport, then 2a will stop, while 2b will enter the ’Long Run
Simulation’ stage. Normally, in real airports, this threshold would be set to a considerably lower value,
say 20% or lower. We chose 50% because of the characteristics of our case study, where we intentionally
chose to ’stress-test’ the system by setting a number of teams per handler that is much lower than what
one would normally find in an airport with the considered daily schedules.

6.5 Results

Table 1 shows a simplified mock-up of the results we envisage that could be presented to service provider
SP1 (fantasy name, for confidentiality reasons) at the end of each run of Phase 1 computations, focusing
on turnaround (T/Round) delays (‘Num’ for ‘number of”). All statistics shown in the table were computed
by the airport’s central computer by combining the single option shown on the left, supposed to have been
chosen by SP1, in combination with all other 3% =9 options possibly chosen by the two competing SPs.
While the table could be augmented with additional KPIs (e.g. team delays and number thereof) and, for
each KPI, with additional descriptive statistics, we believe this output should be kept as simple as possible,
to aid the SP in its selection and understanding of the likely operational (and, ultimately, commercial)
consequences from choosing an option for the next day.

Table 2 shows the running time and number of iterations in the outer loop for both algorithms 2a and
2b, under different operational workloads. Algorithm 2a seems slightly quicker than 2b in 'Low Day’
conditions; the difference in running times is not statistically significant otherwise. Looking at 2a data, we
notice that, sometimes, robustness is reached before the NJ threshold. This is not the case however for 2b,
where, ultimately, the condition leading to exiting the outer loop seems to be always the reaching of N;.

Finally, our Phase 2a/2b results also gave us confidence intervals for the difference between the means
of KPIs, estimated as fly, — flp, for all possible combinations, something that for reasons of space is not
shown here. In terms of number of both types of delay, differences were not statistically significant for most
combinations and, when they were, they were of the order of £1 either way. Differences in the magnitude
of both types of delay were more marked instead, and appeared to be always to the advantage of 2b. These
results are preliminary and difficult to generalise, at the present time, without a more extensive study where
parameters are better fine-tuned and where more varied operational conditions for experimentation are
investigated. However, even within the above limitations, especially on problem parameters, we believe the
same results are credible, with reference to the specific case. Overall, the airport case being investigated
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Table 2: Runtime and Performance Comparison of STTAR Phase 2

Low Day Normal Day Busy Day

Num Flights 50 62 74

Num Flights (Peak Hour) 9 11 14
Avg Runtime (s) (2a) 538.629 2064.438 2362.902
Avg Runtime (s) (2b) 643.958 1983.009 2125.742

Conf Interval [ -118.904, -91.756] | [ -113.138, 275.998] | [ -210.514, 684.834]

N, Min (2a) 7 7 7

N, Max (2a) 10 10 10

N> Min (2b) 50 50 50

N, Max (2b) 50 50 50

is characterised by challenging operational conditions, with GSE and team capacities are extremely tight,
especially at daily peak times.

7 CONCLUSION

In this paper, we have shown the concept and application of a not so futuristic approach to enhance the
overall ability of SPs operating at the same airport to plan next day turnaround team operations. A first
element of novelty is that this is the first paper to employ a Simheuristic approach (Phase 2a/b of the STTAR
scheme) to problems of tactical resource allocation in aircraft turnaround, especially for the allocation of
turnaround teams of ground handlers. The detailed discussion of this element of novelty has been developed
throughout this paper. A related level of novelty regards the fact that ours is the first Simheuristic approach
to employ a hybrid agent-based/discrete event simulation model. For reasons of space, the discussion of
this aspect was not developed in the previous pages, and will become the main topic of a separate paper.

The implementations of the algorithms of both Phase 1 and 2a/2b leaves plenty of room for improvement.
In Phase 1, work should be undertaken on all the heuristics involved, while in Phase 2 more work need to be
done on understanding how the parameters would be set, given a specific airport where the potential use of
STTAR is being investigated. More interesting developments we are currently working on include aspects
such as making sure the simulation components in Phases 2a/b provide more constructive feedback to the
heuristic reasoning component, every time the outer loops need to be run again. For instance, results of
the simulations may be exploited to refine the very definition of the T-TAP and/or to dynamically generate
cuts of various nature that would ultimately improve the methodology itself and the results reached.

Finally, we believe the main advantage for SPs in adopting the STTAR scheme, with respect to the
current situation, resides in the additional information that, between Phase 1 and Phase 2a/b, SPs will have
at their disposal, to support them in the development of more robust tactical plans. Phase 2a/b also adds
advantages in the sense that an overall ‘global’ optimum for the airport as such is devised, without being
binding to SPs. SPs will ultimately enact the tactical plans they feel are best for themselves, hence this
non binding nature of the STTAR scheme should help to overcome potential barriers to adoption. Other
barriers may still exist, such as the need to ensure continuing credibility of the simulation models from
the perspectives of all SPs, and this is something which requires further study.
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