
Multi-objective Optimisation for Rolling Upgrade
Allowing for Failures in Clouds

Daniel Sun∗‡, Daniel Guimarans†, Alan Fekete∗§, Vincent Gramoli∗§, and Liming Zhu∗‡§
∗Software System Research Group, NICTA, Australia
†Optimization Research Group, NICTA, Australia
‡The University of New South Wales, Australia

§University of Sydney, Australia
Email: {daniel.sun, alan.fekete, daniel.guimarans, vincent.gramoli, liming.zhu}@nicta.com.au

Abstract—Rolling upgrade is a practical industry technique
for online updating of software in distributed systems. This paper
focuses on rolling upgrade of software versions in virtual machine
instances on cloud computing platforms, when various failures
may occur. An operator can choose the number of instances
that are updated in one round and system environments to
minimise completion time, availability degradation, and monetary
cost for entire rolling upgrade, and hence this is a multi-objective
optimisation problem. To predict completion time in the presence
of failures, we offer a stochastic model that represents the
dynamics of rolling upgrade. To reduce the computational effort
of decision making for large scale complex systems, we propose a
technique that can find a Pareto set quickly via an upper bound
of the expected completion time. Then an optimum of the original
problem can be chosen from this set of potential solutions. We
validate our approach to minimise the objectives, through both
experiments in Amazon Web Service (AWS) and simulations.

I. INTRODUCTION

Software upgrade in enterprise systems, especially in large
scale web service systems, is inevitable and its frequency
has been increasing. The research challenges of doing this in
distributed systems that must remain highly available, while
handling failures, have been recognised a decade ago [1];
The vulnerability of distributed software upgrade has been
explored [2], [3]. Currently, the common practice in industry
is to use rolling upgrade [3]: A small number of instances
are changed in one round, from the old version (V1) to the
new one (V2), and then another round changes another small
set of instances. This process is repeated in a wave rolling
throughout a system, until all instances are of V2. This paper
focuses on rolling upgrade of a software application deployed
in clouds, where it is economical and simple to update software
by thoroughly replacing some virtual machine instances in
V1 with newly created ones in V2. The advantage of rolling
upgrade is that availability does not degrade too much.

Both previous studies and industrial experiences have re-
vealed that rolling upgrade is vulnerable to diverse failures.
During a rolling upgrade, there are many sources of fail-
ures such as system hardware, software infrastructure, the
virtualisation layers, and even applications in a cloud. All of
potential failures can significantly affect the upgrade process.
Thanks to virtualisation technology, failures can be efficiently
tolerated by replacing and migrating failed virtual machines.
However, actively replacing failed instances brings uncertainty
to the progress of rolling upgrade: For a software system

running in clouds, there are a bundle of backup images. In
clouds modifying images of running virtual machines is often
warned [18], [19]. A software version of the backup images
should be stable and reliable, and consequently is too critical
to be replaced before its next version has been well tested and
confirmed from online experience. That is, any newly created
instances must be in V1. In a rolling upgrade, while some
instances are being upgraded from V1 to V2, some of V2 may
be returning to V1 due to failures.

In practice on planning a rolling upgrade in a cloud-hosted
application, an operator would like to achieve some goals:
completing the process quickly, paying as little monetary cost
as possible, and keeping high service availability. The operator
has some choices to trade off, the number of instances to
upgrade at one round, system environments, and operation
types: The more instances are being upgraded in each round,
the less instances can provide service, but the earlier the rolling
upgrade can be finished. Failures can degrade availability
and extend completion time, but an operator can prepare
for a rolling upgrade by adjusting system environments to
reduce software, system, and performance interference, by
moving partial workload off the instances, by employing more
spare instances and replicating services, and by adopting more
reliable upgrade operations. The preparation can lead to more
stable and healthier system environments which imply low
failure probabilities, but monetary cost applies.

In this paper, our first contribution is the formulation of
multi-objective optimisation for simultaneously minimising the
completion time (T), the cost (C), and the expected loss
(L) of service instances with the presence of failures. We
name this optimisation to be the TCL problem. To solve the
TCL problem, it is necessary to understand system dynamics
during rolling upgrade, and to this end we offer the second
contribution: a stochastic model that represents rolling upgrade
processes for computing T. With the model the TCL problem
is theoretically solvable, but it is computationally expensive for
large-scale complex systems. Hence, our third contribution is a
technique: we use an upper bound of the expected completion
time to find a Pareto set, in which we search for the minimum
of scalarized objective function, given the weights chosen by
an operator. Our evaluations show that our model gives good
predictions of the metrics, and our search-reduction optimisa-
tion finds the TCL solutions in much reduced computational
effort, while for some weights the solution we find is sub-
optimal but still close to the global optimum.

http://ssrg.nicta.com.au/
http://org.nicta.com.au/

The rest of this paper is structured as follows. In Section II,
we review the related work. In Section III, we present the
assumptions and the terminology in this paper. In Section IV,
the TCL optimisation problem is formulated. In Section V we
use absorbing Markov chains to provide the computation of
predicted completion time. In Section VI we use an upper
bound of expected completion time to solve the problem
efficiently. In Section VII, our experiments are described, and
the results are presented. Section VIII concludes this paper and
reflects our contributions.

II. RELATED WORK

On cloud platforms, upgrading instances can be carried out
by simply shutting down and restarting virtual machines [4].
In [3], knowledge of faults is assumed and a fault model is
proposed to help a system. A probabilistic risk model has been
proposed to understand the risk by comparing different factors
in [5]. In this way, it is possible to decide whether to upgrade
or not, but not possible to control and predict rolling upgrade in
runtime. In [6], [7], understanding the dynamics of software
updating with the presence of failures has been recognised
to be essential for distributed software updates. Software,
performance, and fault interferences exist in software systems.
Interferences can have heavy impact on failures and faults. In
clouds interference among tenants and virtual machines is also
considerable. It is possible to moderate system environments
to reduce faults and improve performance [8]–[11].

Reliability and availability of software and hardware sys-
tems have been well analysed with stochastic models [12]–
[15]. Recently we have reported on risk quantification for
version switch in rolling upgrade [15] and a distributed rolling
upgrade protocol [16], both of which represent system dynam-
ics with absorbing Markov chains under different assumptions
on failures. The computation time of numeric models may be
considerably long and this hampers the practical usage in many
cases. In [17], a technique is addressed for deriving an upper
bound of expected completion time for specific absorbing
Markov chains with little computation effort.

To implement our approach, we need AutoScaling, which
aims at elasticity and has been a standard module in popular
cloud software stacks [18], [19]. We also need information
retrieval and extraction from software systems. The techniques
have been well surveyed [13]. There are also some techniques
and tools for exactly acquiring failure probabilities. In the con-
text of data centres, the failure probabilities can be estimated
as the ratio of the number of components of a given type that
failed during a time period over the total number of com-
ponents of this type [20]. Regarding the failure probabilities
of software dependencies, the Common Vulnerability Scoring
System (CVSS) [21] can be used to provide vulnerability-
related failure probabilities for many software libraries and
packages. In order to deal with software faults and errors, our
previous work on process context mining and log analysis,
detection and diagnosis of software flaws and configuration
errors, and risk control in [15], [22] are also necessary for a
full-fledged implementation.

III. PRELIMINARIES

In this section, we present the formalisation and necessary
notations. For clarity of language, in the following we say

an operation for an attempt to replace a single instance in
V1 with a new instance in V2, a round for the simultaneous
operations that replace a small number of the instances, and
rolling upgrade or process for the entire activity (in multiple
rounds) that upgrades all the N instances. The notations we
are using are listed in Table I.

TABLE I. NOTATIONS

Symbols Descriptions

N Number of all instances
G Granularity, the number of instances in one upgrade
pp Probability of platform failure for an individual instance
po Probability of an individual operation failure
K Set of system options, i.e. (pp, po) pairs

T or T (pp, po, G) Expected time (in rounds) to complete rolling upgrade
B(pp, po, G) Bound of expected completion time T (pp, po, G)
C or C(pp, po) Financial cost of a given option

C Set of costs among different options
L or L(pp, G) Expected loss of service instances per round

U Number of upgraded instances
g Number of failures in instances being upgraded
u Number of failures in upgraded instances
v Number of operation failures

A. System Model

The system consists of a set of instances that initially
are ready to be upgraded. A rolling upgrade is performed in
consecutive rounds, and in each round a subset of V1 instances
are selected. The size of the subset, i.e. the granularity value
G, can be chosen by the operator. Then, G operations attempt
to replace the selected instances simultaneously in one round.
After all new instances have been tested, a round is finished
and the next one can start. We measure the completion time
of the entire rolling upgrade process in the number of all
rounds, which are assigned the same timeout. In each round
an individual instance is given only one attempt, and if it is
not successful, another attempt to the same instance will be in
a later round.

The progress of the rolling upgrade is characterised by the
number of V1 instances. We refer to the situation that exactly
i instances are healthily running V1 (and thus there are N − i
instances running V2), as state i of the rolling upgrade1. When
i reduces from N to 0, we say that a rolling upgrade has been
successfully finished. The assumptions necessary for modelling
and formulating the problem are listed as follows.

A1 Software and configuration faults can be detected, and
failures will be handled by a recovery.

A2 An instance can only fail once in a round. This makes
the model simpler, and is a reasonable approximation
to reality because a round is not much longer than the
replacement time.

A3 The operator can obtain information such as failure
probabilities or rates for each system option through
retrieving or extracting systems information.

A4 The operator is aware of the possible system options
and can obtain the information about the correspond-
ing costs.

Note that, one may argue that a rolling upgrade can be sched-
uled to an idle time slot in a system, but we do not consider

1This descending numbering makes for analytical convenience later

this for two reasons: First a rolling upgrade may take a long
time, hours or days, in large scale systems and applications
such that there is no time slot long enough; Second for those
systems that do not provide continuous service and indeed have
sufficient idle time, rolling upgrade is not necessary.

B. Failure and Cost

Since we use instance health checking and auto-scaling
provided by cloud infrastructures to deal with instance and
infrastructure failures, we only need to consider the features
of those failures other than what they are and how they can
be tolerated. This is the benefit from cloud technologies. We
name this kind of failures Platform failures, which randomly
appear in any instances. Since all rounds are assigned the same
timeout, the probability, pp, of platform failures for an individ-
ual instance in a round can be computed from the operator’s
knowledge (see A3). Thus, the number of platform failures
during a round follows a binomial distribution characterised
by pp. An attempt to upgrade an instance may fail, sometimes
frequently. We call this kind of failures Operation failures.
From sufficient software test, the number of operation failures
can be known and it also follows a binomial distribution with
the probability po. For all the other software and configuration
faults, we have assumed A1 and will not consider in this paper.

The recovery of failures does not impact the process, since
the recovered instances are in V1. If all instances are in V2

except some instances not recovered yet in the final rounds,
the operations will directly create new V2 instances.

The operator has a number of system options (see A4).
Each option corresponds to particular system environment
and operation, which are characterised by a pair of (pp, po).
We regard pp and po as discrete parameters. The pairs of
Ki = (pp, po) are contained into a set K. Thus, Ki represents
a system option for rolling upgrade. Each system option is
associated with a corresponding financial cost. The cost data
are available (see A4). The costs are in the set C. There is a
mapping between K and C, C : K 7→ C. Because different
environments may result in the same cost, |K| ≥ |C|. To
know the exact form of C is difficult and there is no existing
cost functions for cloud context in the literature. The cost
data can be collected from specific systems, calculated from
the price list of pay-as-you-go if available, or extracted from
maintenance cost.

IV. THE TCL OPTIMISATION PROBLEM

An operator can decide on a granularity G, and choose
a system option with particular failure probabilities, for the
tradeoff among the goals. The expected completion time
depends on pp, po, and G and consequently is denoted as
a computation T (pp, po, G); The cost is known as C(pp, po);
The expected loss of service instances can be calculated as
follows: In each round, some of the instances of the service
are not available to respond to clients, either because those
instances are being operated, or because they are being recov-
ered after failures. Since the recovery is actually to replace
failed instances, the recovery time can be approximately the
time length of a round. It is not difficult to see that L depends
also on pp, and then we derive the expected number of lost

instances per round,

L(pp, G) = (N −G)pp +G. (1)

The tradeoff is that if an operator chooses a system option with
smaller failure probabilities for shorter completion time and
less expected loss of instances, the cost will be higher, while
a greater G means fewer rounds but more loss of instances
in each round. Generally, an operator needs to minimise T ,
C and L. Then, we formulate the multi-objective optimisation
problem, i.e. the TCL problem.

min {T (pp, po, G), C(pp, po), L(pp, G)}
s.t. {pp, po} ∈ K

1 ≤ G ≤ N
(2)

The TCL problem can be solved in many ways [23]. In this
paper, we adopt the scalarisation technique, by which the TCL
problem is in the following form.

min f = αT (pp, po, G) + βC(pp, po) + γL(pp, G)

s.t. {pp, po} ∈ K
1 ≤ G ≤ N,

(3)

and α + β + γ = 1. The benefit of adopting the scalarization
technique is that the weights α, β, and γ can be set by an
operator to give appropriate emphasis on the objectives to
reflect the importance of a particular setting. Note that, in some
cases magnitude differences may have obvious impact on the
result. It is not difficult to adopt a transformation method to
remove the differences, about which in this paper we do not
discuss.

In the TCL problem, G, pp, and po are all discrete;
C(pp, po) is known; L(pp, G) is in a closed form. Thus the
essential step is to compute an accurate T (pp, po, G). In the
next section, we show the computation through stochastic
modelling.

V. MODELLING ROLLING UPGRADE WITH DTMC

In this section, we provide the computation T (pp, po, G)
for predicting expected completion time. The nature of rolling
upgrade consisting of consecutive rounds implies a discrete
time model, and therefore we choose discrete time Markov
chain (DTMC) to represent the dynamics of rolling upgrade.
Since a process ends at all instances being in V2, there must
be an absorbing state. We use the system states as the state
space of the absorbing Markov model, {0, 1, 2, · · · , N}, where
0 denotes that there is no instance remaining in V1. A process
starts from N and once it reaches the state 0, it is successfully
finished. In each round, the state moves forward or backward,
or stays in the same state as before. The farthest forward
transition distance is G. In other words, if the current state
is i the next state after a forward transition is at most i − G
(no failure presents). On the other hand, the next state after
a backward transition from i can be N (there are too many
failures). Some examples with different G are shown; in Fig. 1.
In this paper, we provide below a general solution for all
1 ≤ G ≤ N .

We need to calculate the transition probabilities in terms of
the probabilities of failures. For a forward transition from the
state i to i− j, the number of successful operations should be
j at least. The number of successful operations can be greater

6 5 4 3 2 01

6 5 4 3 2 01

A

B

Fig. 1. Examples of chains A (N = 6, G = 1) and B (N = 6, G = 2).

than j, when some V2 instances are lost due to failures. Since
in every round, a rolling upgrade operates on G instances, it is
necessary to understand what have happened to the other G−j
instances. If g instances in G fail, the number of operations is
actually G − g, but G − g ≥ j because at least j successful
operations must be performed for the transition from i to i−j.
Hence, we know g ≤ G − j. Then if G − j − g > 0, there
must be u platform failures in V2 instances and v operation
failures, and otherwise the state will move farther than j steps.
For this reason, u+ v = G− j− g must hold. In other words,
the number of actual operations should be u+ v+ j = G− g,
among which the number of successful operations should be
u + j since v operations must fail. Note that, the failures in
V1 instances have no impact on any transitions. By summing
up, the forward transition probability is (4).

Since U = N − G − i, the probability is a function of i.
Similarly for the backward transition probability, the net loss
of V2 instances should be j. Hence, the number of failures
in V2 instances should be u ≥ j and u ≤ G + j since
only failures can move the states backward. The number of
successful operations should be u− j out of G− g operations
and as a result the other G − g − u + j operations must be
with operation failures. The backward transition probability is
(5).

pi,i−j =

G−j∑
g=0

G−j−g∑
u=0

((
G

g

)(
U

u

)
pg+up qG+U−g−u

p(
G− g
u+ j

)
pG−j−g−u
o qu+j

o

)
. (4)

pi,i+j =

G∑
g=0

G+j−g∑
u=j

((
G

g

)(
U

u

)
pg+up qG+U−g−u

p(
G− g
u− j

)
pG−g−u+j
o qu−jo

)
. (5)

It is possible that after an upgrade the state does not change
at all. This probability is pi,i in (6), since we only consider
the case that all pi,j add up to 1.

pi,i = 1−
N−i∑
j=1

pi,i+j +

G∑
j=1

pi,i−j . (6)

Note that in the modelling G should be replaced by i iff. i < G
because at the final rounds the granularity is possible to be
smaller than G. Because the V1 instances are not involved in

the transition probabilities, the V1 instances do not impact the
accuracy of our modelling.

With all the transition probabilities, the stochastic matrix
P can be established. Then, it is not difficult to compute the
expected completion time in terms of [12]. In this paper, we do
not repeat the content in textbook. As a result, we can compute
T (pp, po, G) from the model. As we will see in Section VII, the
accuracy of T (pp, po, G) is satisfying. Thus, the TCL problem
becomes solvable.

VI. SOLVING TCL PROBLEM EFFICIENTLY

Because both T (pp, po, G) and C(pp, po) are not explicit
functions, we need a search algorithm to find the optima,
but it is inevitable to query the model for T (pp, po, G) many
times. Each query has to compute an inverse of a matrix with
considerable computation effort. In larger-scale systems, the
search space may be huge and consequently the transition
matrix is big. Therefore large-scale optimisations become
difficult. If we can compare completion times from different
parameters and shrink the search space without matrix com-
putation, the optimisation can be solved more efficiently. That
implies such a computation B(pp, po, G): It must be computed
quickly; If T (p1

p, p
1
o, G

1) ≤ T (p2
p, p

2
o, G

2), we always have
B(p1

p, p
1
o, G

1) ≤ B(p2
p, p

2
o, G

2). In this paper, we adopt an
upper bound of the expected completion time and use this
bound as B(pp, po, G). Then we evaluate the effectiveness and
the efficiency through experiments.

A. An Upper Bound of Completion Time

At first, let us discuss the model in a formal way. The model
has a state space Π = {0, 1, 2, 3, · · · , N}. A chain is a series
of random variables {πj ; j ∈ N}. The absorbing state is 0
and a process starts from π0 = N . Let TN be the completion
time from the initial state N . Then, we introduce the upper
bound of E[TN] through the drift, which is defined to be ∆i =∑N−i
l=1 lpi,i+l −

∑G
l=1 lpi,i−l. Given the granularity and the

probabilities, ∆i keeps monotonicity as shown in Lemma 1
and 2. Because the space limit, we do not derive the bound in
this paper. The proofs can be reached in [17].

Lemma 1. For a transition matrix generated by (4), (5), (6),
as i decreases, i.e. a rolling upgrade progressing, ∆i keeps
increasing always.

Lemma 2. If ∆1 > 0, there must be a state τ such that ∀i < τ ,
∆i < 0 and ∀i ≥ τ , ∆i ≥ 0.

In practice, computing our bounds only needs the mono-
tonicity of ∆i, and actually it does not need to construct the
matrix and compute all ∆i. For the case that both positive
and negative drifts exist, the existence of τ splits the entire
state space into two parts: One is the states with negative
drifts and the other is the states with positive drifts. Let the
latter be a sub-space Ω = {i ∈ Π,∆i ≥ 0}, in which all
states are with non-negative drifts, and in Π − Ω all states
are with negative drifts. Physically this implies that such a
rolling upgrade proceeds quickly before τ and slows down
until the finish of the whole rolling upgrade. The upper bound
of expected completion time for Ω = ∅ is in Theorem 3.

Theorem 3. If Ω = ∅, E[TN] <
⌈

lgN
lg µ

⌉
+ µ

µ−1 , where µ =
N

N+∆1
.

When Ω 6= ∅, we provide Theorem 4 to solve this
problem, but we only provide the case of 0 < ∆1 < 1, since
when ∆1 ≥ 1 the completion time must be unreasonably long
with respect to the number of instances. In this paper, we filter
off those cases resulting in ∆1 ≥ 1 immediately.

Theorem 4. For Ω 6= ∅, 0 < ∆1 < 1 and ∆τ ≥ 0, let
TΩ
τ represent the time spent in Ω before returning back to

Π−Ω or falling into the final absorbing state, and let TΠ−Ω
N−τ

be the time before entering Ω, the expected completion time
of a rolling upgrade is bounded as

E[TN] ≤ E[CΩ]
(
E[TΩ

τ] + E[TΠ−Ω
N−τ]

)
,

where CΩ is the number of commutes between Ω and Π−Ω,
and

E[TΠ−Ω
N−τ] <

⌈
lg(N − τ)

lgµ

⌉
+

µ

µ− 1
, µ =

N − τ
i+ ∆N−τ

,

E[TΩ
τ] =

1

∆1
+

(τ + 1)(E[CΩ])τ+1

(E[CΩ])τ+1 − 1
· 2

1−∆1
,

E[CΩ] =
1−∆1

1 + ∆1
.

As a result, B(G, pp, po) is the bound in either Theorem 3
or Theorem 4.

B. Finding Pareto Sets and Proposed Optimisation Method

With the aforementioned bound, the optimisation in (2) can
be solved in two steps. First, we search for a Pareto set S∗,
i.e. Pareto surface, for the following optimisation problem.

min {B(pp, po, G), C(pp, po), L(pp, G)}
s.t. {pp, po} ∈ K

1 ≤ G ≤ N
(7)

S∗ = {p∗p, p∗o, G∗|{pp, po, G|B(p∗p, p
∗
o, G

∗) ≤ B(pp, po, G),
C(p∗p, p

∗
o) ≤ C(pp, po), L(p∗p, G

∗) ≤ L(pp, G),∀pp, po, G} =
∅}. Second, we search only over S∗ for an optimum in terms
of the following scalarisation.

min f = αT (pp, po, G) + βC(pp, po) + γL(pp, G)

s.t. {pp, po, G} ∈ S∗, (8)

and α + β + γ = 1. It has been proved that the minimum
produced by (3) is an efficient solution for the original multi-
objective optimisation problem and belongs to the original
Pareto set S of (2). If B(pp, po, G) can distinguish and compare
different solutions well, S∗ is identical or close to S, and hence
the minimum from (8) is the same as or close to (3). Because
any change to the parameters results in different ∆i, which
impact on the bounds heavily, the bound can trace the change
of the expected completion time. In this paper, we evaluate the
effect in experiments. Both S and S∗ must be smaller than the
overall search space.

Now, actually we have two optimisation methods: M1

is our proposed method that finds S∗ via the bound for (7)
and then searches for the solutions in S∗ for minimising the
objective function in (8); M2 is to find S directly via the
model and then searches for the solutions in S∗. It is possible
to search for an optimum directly from the search space, but we
do not discuss this possibility in this paper, because a notable
benefit from M1 and M2 is that once a Pareto set is found
whatever α, β, and γ are from users, the optimisation can be
solved on the set because all optima must be in the Pareto
set. Also we omit the analytical comparison between the two
methods, sinceM1 is obviously faster thanM2 for no matrix
operations involved.

VII. EMPIRICAL STUDIES

In this section we examine the validity of our model, and
the proposed optimisation method. We have some experiments
done in AWS, among instances which work in a coopera-
tive mode to host distributed HTTP servers. In our AWS
experiments, we have artificially introduced failures by killing
instances with appropriate probabilities. In AWS, we examine
only settings where N = 32, as these experiments cost real
money. We also have run discrete event simulations, in which
we watch on the change of the instances in each version, for a
wider range of system sizes with 32, 64 and 128 instances. The
rolling upgrade and its control are coded in Java in AWS, and
the algorithm, the bounding, and the optimisation are coded in
R on a desktop computer. In both settings, the system options
and the associated failure probabilities come from our previous
tests and those reported in [3].

In Fig. 2 we compare the expected completion time from
the model, the upper bound, and the average completion time
from experiments including the loss of instances. It is visible
that our model can capture the change of completion time. The
bound can also reflect the change clearly, but as we can see
in A and C when G becomes big enough the lines are almost
horizontal for the bound. We call this phenomenon saturation,
but the saturation does not apply for the probabilities as shown
in B and D. The bound enters the saturation always earliest.
This is the reason why the bound can be used for optimisation,
since in most cases the bound can reflect the change of real
completion time very well. Even if a sub-optimal solution is
selected via the bound for big G, the errors must be very small.
We test different numbers of options to observe the differences
of Pareto sets and the computation times taken by M1 and
M2 in E. The number of options is either 9 or 36 for the
experiments with 32 or 64 instances, and the results are the
average of many repeats. The cost values and the probabilities
are randomly generated within the ranges. In order to eliminate
the impact from different computers, we show the average
coverage of S∗ onto S, and the ratio of the computation time
of M1 to M2. Note that we only measure the time used for
finding the Pareto sets rather than finding an exact optimum.
It is easy to see that the coverage is high, but reducing as the
search space size increases. While, the computation time taken
byM1 is much shorter thanM2, and the ratio becomes lower
for large search space.

To show the difference between S∗ and S, the difference of
optimum and sub-optimum, and the reason of obtaining a sub-
optimum, one experiment is performed with fixed cost values,
24 options, and fixed probabilities for 32 instances. There are

2 4 6 8

10

20

30

40

50
 T

im
e

(R
ou

nd
s) Experiment

 Model
 Bound

G

N=32, p
P
=0.015, p

o
=0.5, AWS

120

180

240

300

 A

0.005 0.010 0.015 0.020
20

40

60

80

100
N=32, G = 2, p

o
=0.6, AWS

 T
im

e
(R

ou
nd

s)

 Experiment
 Model
 Bound

p
p

150

300

450

600

750

2 4 8 16 32
101

102

103

104
N=128, p

P
=0.01, p

o
=0.5

 Simulation

 T
im

e
(R

ou
nd

s) Experiment
 Model
 Bound

G

102

104

106

108

1010

0.1 0.2 0.3 0.4 0.5
102

103

104
N=128, G=2, p

P
=0.01

Simulation

 T
im

e
(R

ou
nd

s)
 Experiment
 Model
 Bound

p
o

104

106

108

1010

B

C
D

Fig. 2. Experiment results from AWS(A and B) and simulation (C and D).
The left axis and the line marked by triangles in red are for the bound.

9 solutions missing from S∗ compared to S. We search for
24 optima under different weights in a brute-force way (the
search space is not too huge to search in this way). There are
only one different optimum. In S this optimum has G = 18
on α = 0.8, β = 0.1, and γ = 0.1, and results in T = 5.15,
L = 18.3, and C = 35, while in S∗ the corresponding one is
with a smaller granularity G = 16, and results in T = 5.46,
L = 16.3, and C = 35. In terms of the objective function f ,
the one in S∗ is a sub-optimum, but the expected completion
time is only 0.29 round longer than the corresponding one in
S. Thus, the experiments testify that most optima can be found
by M1, 1 lost out of 24, while the only sub-optimum is very
close to the optimum. We should also notice that such a big G
implies the loss of more than a half availability, and hence an
operator will rarely set such a big α. In F of Fig. 3 we plot all
completion time gaps in the saturation for all 24 options. The
sub-optimum above is in the circle. The three blue gaps are
the biggest but less than 10 rounds, and are possibly replaced
by the neighbours with other options, because a solution may
be replaced by another one with smaller value of objective
function for specific weights.

VIII. CONCLUSION

In this paper, we discuss the optimisation of rolling upgrade
on cloud platforms, when failures can occur. To achieve our
goal, we have provided: 1) The formulations of a multi-
objective optimisation, named the TCL problem; 2) Stochastic
modelling of rolling upgrade; 3) A technique of quickly
solving the TCL problem via the upper bound. The experiment
results demonstrate that the prediction using the model is fairly
accurate, and that the proposed optimisation method can find
most optima much faster and the error is small if there is an
sub-optimum.

REFERENCES

[1] E. A. Brewer, “Towards robust distributed systems (abstract),” in PODC.
ACM, 2000.

[2] O. Crameri, N. Knezevic, D. Kostic, R. Bianchini, and W. Zwaenepoel,
“Staged deployment in mirage, an integrated software upgrade testing
and distribution system,” in SOSP. ACM, 2007, pp. 221–236.

0.0

0.2

0.4

0.6

0.8

1.0

64x3632x3664x9

Pe
rc

en
ta

ge
 (%

)

 Time Size

32x9

0.005
0.010

0.015
0.020

0

2

4

6

8

10

0.2
0.3 0.4

0.50.6
0.7

Ti
m

e
G

ap
 (R

ou
nd

s)

p
o

p
p

E F

Fig. 3. In E, Time is the ratio of the time used for finding a Pareto set by
M1 to that for M2. Size is the ratio of the size of Pareto set found by M1

to that by M2. F is the gaps.

[3] T. Dumitraş and P. Narasimhan, “Why do upgrades fail and what can we
do about it?: Toward dependable, online upgrades in enterprise system,”
in Middleware, 2009, pp. 18:1–18:20.

[4] [Online]. Available: http://techblog.netflix.com/2012/06/asgard-web-
based-cloud-management-and.html

[5] T. Dumitras, P. Narasimhan, and E. Tilevich, “To upgrade or not
to upgrade: Impact of online upgrades across multiple administrative
domains,” in OOPSLA. ACM, 2010, pp. 865–876.

[6] S. Ajmani, B. Liskov, and L. Shrira, “Modular software upgrades for
distributed systems,” in ECOOP, Jul. 2006.

[7] S. Ajmani, “Automatic software upgrades for distributed systems,”
Ph.D. thesis, MIT, Sep. 2004.

[8] B. Zimmer, C. Dropmann, and J. U. Hanger, “A systematic approach
for software interference analysis,” in ISSRE. IEEE, 2014, pp. 78–87.

[9] A. Iosup, “Iaas cloud benchmarking: approaches, challenges, and expe-
rience,” in HotTopics, 2013, pp. 1–2, invited lecture.

[10] V. Debroy and W. E. Wong, “Insights on fault interference for programs
with multiple bugs,” in ISSRE. IEEE, 2009, pp. 165–174.

[11] R. Nathuji, A. Kansal, and A. Ghaffarkhah, “Q-clouds: Managing
performance interference effects for qos-aware clouds,” in EuroSys.
ACM, 2010, pp. 237–250.

[12] K. S. Trivedi, Probability and Statistics with Reliability, Queueing, and
Computer Science Applications. John Wiley and Sons, 2001.

[13] R. Pietrantuono, S. Russo, and K. S. Trivedi, “Software reliability
and testing time allocation: An architecture-based approach,” IEEE
Transaction on Software Engineering, vol. 36, no. 3, pp. 323–337, 2010.

[14] W. Sun, Y. Zhang, C. Yu, X. Défago, and Y. Inoguchi, “Hybrid over-
loading and stochastic analysis for redundant real-time multiprocessor
systems,” in SRDS, 2007, pp. 265–274.

[15] D. Sun, L. Bass, A. Fekete, V. Gramoli, A. Tran, S. Xu, and L. Zhu,
“Quantifying failure risk of version switch for rolling upgrade on
clouds,” in Proceedings of International Conference on Big Data and
Cloud Computing, 2014.

[16] V. Gramoli, L. Bass, A. Fekete, and D. Sun, “Rollup: Non-disruptive
rolling upgrade,” The University of Sydney, Tech. Rep. 169, 2015.

[17] D. Sun, “An upper bound of absorbing markov models for modelling
and analysis of software system reliability,” SSRG, NICTA, Tech. Rep.
1833-9646-8559, 2015.

[18] [Online]. Available: https://aws.amazon.com/
[19] [Online]. Available: https://wiki.openstack.org/wiki/Heat
[20] P. Gill, N. Jain, and N. Nagappen, “Understanding network failures in

data centres: Measurement, analysis, and implications,” in SIGCOMM,
2011.

[21] NIST, “Common vulnerability scoring system (cvss),” 2014. [Online].
Available: http://nvd.nist.gov/cvss.cfm

[22] X. Xu, L. Zhu, L. Bass, I. Weber, and D. Sun, “Pod-diagnosis: Error
diagnosis of sporadic operations on cloud applications,” in DSN, 2014.

[23] J. Branke, K. Deb, K. Miettinen, and R. Slowinski, Multiobjective
Optimization: Interactive and Evolutionary Approaches. Springer,
2008.

http://techblog.netflix.com/2012/06/asgard-web-based-cloud-management-and.html
http://techblog.netflix.com/2012/06/asgard-web-based-cloud-management-and.html
https://aws.amazon.com/
https://wiki.openstack.org/wiki/Heat
http://nvd.nist.gov/cvss.cfm

	Introduction
	Related Work
	Preliminaries
	System Model
	Failure and Cost

	The TCL optimisation problem
	Modelling Rolling Upgrade with DTMC
	Solving TCL Problem Efficiently
	An Upper Bound of Completion Time
	Finding Pareto Sets and Proposed Optimisation Method

	Empirical Studies
	Conclusion
	References

