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Abstract

The capacitated location routing problem (CLRP) integrates a facility
location problem with a multi-depot vehicle routing problem. In this paper,
we consider the CLRP with stochastic demands, whose specific values are
only revealed once a vehicle visits each customer. The main goal is then
to minimize the expected total cost, which includes not only the costs of
opening facilities, using a fleet of vehicles, and executing a routing plan,
but also the cost of applying corrective actions. These actions are required
whenever a route failure occurs due to unexpectedly high demands in a route.
To solve this stochastic and NP-hard optimization problem, a simheuristic
algorithm is proposed. It hybridizes simulation with an iterated local search
metaheuristic in order to: (i) propose a safety-stock policy to diminish the
risk of suffering route failures; and (ii) estimate both the expected cost as well
as the reliability index of each ‘elite’ solution found. The competitiveness of
our approach is shown in a series of computational experiments, which make
use of classical CLRP benchmarks. These benchmarks are also extended
to consider scenarios under uncertainty. Different variability levels for the
random demands are analyzed. Moreover, the effect of the safety-stock policy
on the solution cost and reliability index is also discussed.
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1. Introduction

In logistics management, facility location and route planning are linked
decisions. However, in most real-life situations, these decisions are made in
a sequential and independent way. On the one hand, size (capacity) and
location of warehousing facilities or depots are usually decided without con-
sidering its effects on routing plans. On the other hand, customers are usually
allocated to facilities just considering dedicated trips (i.e., minimizing allo-
cation distance), but without considering its effects for routing purposes.
Therefore, such isolated decisions lead to suboptimal solutions. To overcome
this situation, several authors address the integrated capacitated location
routing problem, or CLRP (Prodhon and Prins, 2014; Quintero-Araujo et al.,
2017a).

As illustrated in Figure 1, the aim of the CLRP is to determine: (i) the
facilities to be opened among a set of potential candidates with different
locations and capacities; (ii) the allocation of customers to the open facili-
ties; and, (iii) the corresponding routes that serve all customers’ demands.
Usually, the main goal is to minimize the total cost, i.e., the addition of
opening costs, fleet costs, and routing costs. In practical terms, the CLRP
combines the facility location problem (FLP) with the multi-depot vehicle
routing problem (MDVRP). Since both of these problems are NP-hard, it
is clear that their integration in the CLRP is also an NP-hard optimization
problem.

While uncertainty is one of the main characteristics of real-life problems,
most of the published works analyze the deterministic version of the CLRP,
in which all inputs and parameters are supposed to be known in advance. To
contribute to close this gap, this paper deals with a more realistic version of
the CLRP with stochastic demands (CLRPSD). The introduction of stochas-
tic demands, whose specific value is only revealed once a vehicle reaches each
customer on its route, might also result in route failures. In effect, whenever
the accumulated demand requested by the customers on a route exceeds the
vehicle capacity, the route cannot be completed as designed and a costly
corrective action will be required, e.g., a round-trip to the depot facility for
a truck reload. As illustrated in the recent work by Zhang et al. (2019), the
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Figure 1: An illustrative description of the CLRP.
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study of the CRLPSD is relevant, among other potential applications, when
dealing with fleets of electric vehicles in the context of smart cities.

In order to minimize the expected total cost in the CLRPSD, we propose
a simheuristic algorithm combining Monte Carlo simulation (MCS) with a
metaheuristic framework. In our case, simulation is integrated into an iter-
ated local search framework (SimILS), as proposed in Grasas et al. (2016).
The resulting SimILS also makes use of different perturbation operators and
biased randomization techniques. As discussed in Grasas et al. (2017), bi-
ased randomization techniques allow to introduce a ‘skewed’ (non-uniform)
random behavior into heuristic-based procedures, thus orienting the search
process towards promising regions of the solution space (Fikar et al., 2016).
Finally, safety stocks in each vehicle are considered during the routing design
stage in order to diminish the risk of suffering route failures during the exe-
cution of the routing plan. Accordingly, the main contributions of this work
are: (i) a formal description of the CLRPSD, which extends the deterministic
CLRP by also considering non-smooth costs generated by the application of
corrective actions; (ii) an original simheuristic algorithm, combining simu-
lation with a biased-randomized iterated local search to solve the CLRPSD;
(iii) the incorporation of reliability indexes (to measure the probability that
a given solution does not suffer route failures) and safety-stock levels during
the routing design stage; (iv) the analysis of how solutions change as the level
of uncertainty is increased; and, (v) a reliability / risk analysis on alternative
solutions, so that different decision-maker profiles can be fitted.

The remainder of this paper is organized as follows. Section 2 contains
a literature review on related work. Section 3 describes the problem under
study. Sections 4 and 5 present, respectively, the solving approach used to
tackle the CLRPSD, as well as the numerical experiments carried out. Fi-
nally, section 6 outlines some conclusions and further research opportunities.

2. Literature Review

Since the number of works related to the CLRPSD is still quite scarce,
this section reviews first the related work on the deterministic CLRP. Then,
different works on stochastic versions of the problem are reviewed, and a
short discussion on the concept of simheuristics is provided.
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2.1. Related Works on the Deterministic CLRP
The CLRP comprises all decision levels (strategic, tactical, and opera-

tional) in supply chain management. Strategic decisions are related to the
number and size of facilities to be opened, while tactical and operational ones
are associated with customers’ allocation to open facilities and the corre-
sponding distribution routes, respectively. In terms of classical optimization
problems, the CLRP combines the FLP —which is associated with strategic
decisions— and the MDVRP —which is related to customers’ allocation to
facilities and the consequent route planning (Nagy and Salhi, 2007). The
benefits derived from taking into account routing decisions while locating fa-
cilities were firstly estimated in Salhi and Rand (1989). The authors showed
that solving the associated FLP and VRP sub-problems independently usu-
ally generates sub-optimal solutions. Due to computational constraints, the
first works addressed the CLRP by firstly tackling the FLP and then using
its solution to solve the associated MDVRP. However, recent approaches pro-
pose to solve the problem using an integrated perspective (Dai et al., 2019;
Quintero-Araujo et al., 2017a). Lopes et al. (2016) proposed a hybrid ge-
netic algorithm to solve the CLRP using two different local search strategies
to improve both the location and the routing level. The CLRP has several
real-life applications that include, among others, city logistics (Nataraj et al.,
2019), horizontal cooperation (Quintero-Araujo et al., 2019), and location of
battery swap stations for electric vehicle routing (Hof et al., 2017). Despite
the importance of the CLRP in supply chain management, the number of
published works is significantly lower than the number of articles related to
other vehicle routing variants.

Due to the NP-hard nature of the two sub-problems that constitute the
CLRP, exact methods are less frequent than heuristic-based approaches.
Among the former, Belenguer et al. (2011) and Akca et al. (2009) solved
instances with up to 50 customers and 5-10 facilities, whilst Baldacci et al.
(2011) and Contardo et al. (2014) were capable of solving instances with
at most 200 customers and 10-14 potential facility locations. Constructive
clustering-based heuristics to solve the CLRP have been proposed by Bar-
reto et al. (2007), Boudahri et al. (2013), and Lopes et al. (2008). Con-
cerning metaheuristic approaches, some population-based algorithms have
been proposed (Prins et al., 2006a; Ting and Chen, 2013), although most
published works make use of single-solution approaches (Prins et al., 2006b,
2007; Duhamel et al., 2010; Escobar et al., 2014; Contardo et al., 2014).
Also, a number of CLRP applications have been studied in the literature.
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For instance, Mousavi and Tavakkoli-Moghaddam (2013) analyzed a real-life
CLRP related to cross-docking platforms.

The two subproblems composing the CLRP have received far more at-
tention separately. For example, the FLP has been addressed using exact
(Efroymson and Ray, 1966; Schrage, 1978) and heuristic methods (Hochbaum,
1982; Li, 2011; De Armas et al., 2016). Application examples range from re-
allocation of ambulances in real-time (Gendreau et al., 2001) to digital net-
work design problems (Thouin and Coates, 2008). The reader is referred to
Snyder and Daskin (2006) and Fotakis (2011) for a more detailed overview of
solving methods and applications related to the FLP. As for the MDVRP, dif-
ferent heuristic approaches have been proposed by Tillman and Cain (1972),
Gillett and Johnson (1976), and Golden et al. (1977). On the side of meta-
heuristics, different methods have been tested. These include tabu search
(Cordeau et al., 1997; Renaud et al., 1996), genetic algorithms (Thangiah and
Salhi, 2001; Ho et al., 2008), adaptive large neighborhood search (Pisinger
and Ropke, 2007), and iterated local search (Juan et al., 2015), among others.
The reader is referred to Montoya-Torres et al. (2015) for a recent review on
the MDVRP.

2.2. Related Works on the Stochastic CLRP and Simheuristics

Regarding the CLRP with stochastic components, the number of existing
works is very limited. Still, different uncertainty sources have been consid-
ered in the literature: travel times, customers’ service request, customers’
demands, etc. A variant of the CLRP with stochastic customer requests is
analyzed in Albareda-Sambola et al. (2007). In this work, uncapacitated ve-
hicles are used to perform routing tasks. Customers’ request for service is
not known in advance and it is modeled by means of a Bernoulli distribution.
Probabilistic travel times are included in Ghaffari-Nasab et al. (2013). These
authors solved a bi-objective CLRP in which the analyzed objectives are the
total costs and the maximum delivery time to the customers. Stochastic de-
mands have been modeled both by means of fuzzy numbers (Mehrjerdi and
Nadizadeh, 2013; Zarandi et al., 2013) as well as random variables (Mari-
nakis, 2015; Marinakis et al., 2016). Unfortunately, these works limit their
analysis to the case in which the random demands follow a Poisson proba-
bility distribution, which not only is a discrete distribution but also has a
fixed variance once the mean is given. Therefore, they do not consider sce-
narios with different uncertainty levels. Moreover, no reference to simulation
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techniques is made in these papers and, accordingly, they are methodologi-
cally different from the simheuristic algorithm presented here. More recently,
Zhang et al. (2019) addressed a battery swap station LRP with stochastic
demands using a modified version of Particle Swarm Optimization (PSO)
combined with Variable Neighborhood Search (VNS). The former algorithm
is used for the location level, while the latter is used for the route-design
phase.

Different examples on the combination of simulation with heuristic-based
methods for solving combinatorial optimization problems can be found in
the literature (Faulin et al., 2008; Faulin and Juan, 2008). Simheuristics
is a relatively new and efficient approach to tackle combinatorial optimiza-
tion problems under uncertainty (Juan et al., 2018). Roughly speaking, a
simheuristic algorithm works in the following way: (i) given a stochastic
problem setting, the random variables are transformed into deterministic val-
ues by considering expected values; (ii) a metaheuristic framework is used to
generate high-quality solutions for the deterministic instance that can also
be ‘promising’ solutions for the stochastic version of the problem; (iii) these
promising solutions are sent to a simulation component in order to estimate
its quality in a stochastic environment —the simulation component also pro-
vides useful feedback to better guide the metaheuristic search; and, (iv) a
refinement of the estimates is obtained for a subset of ‘elite’ solutions us-
ing a more computationally-intensive simulation process. Typically, a risk
or reliability analysis of these elite solutions is also performed to include
the risk-orientation profile of the decision maker. Different simheuristic al-
gorithms have been presented in the literature to solve routing problems.
Stochastic demands in vehicle routing problems are addressed in Juan et al.
(2013) and Quintero-Araujo et al. (2017b). Similarly, the arc routing prob-
lem with stochastic demands is discussed in Gonzalez-Martin et al. (2018),
while the waste collection problem with stochastic demands is analyzed in
Gruler et al. (2017). Stochastic versions of the inventory routing problem
can be found in Juan et al. (2014b), Gruler et al. (2018a), and Gruler et al.
(2018b). Likewise, the stochastic two-dimensional vehicle routing problem is
analyzed in Guimarans et al. (2018). In addition, simheuristics can also be
used in the context of stochastic scheduling problems, like the ones proposed
in Fu et al. (2018), Fu et al. (2019), Juan et al. (2014a), Gonzalez-Neira et al.
(2017), and González-Neira et al. (2019).
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3. Problem Description

In this section we present a model for the stochastic CLRPSD, which is an
extension of the mixed integer linear programming model proposed by Prins
et al. (2006b) for the deterministic CLRP. Consider a graph G = (V,A,C),
where:

• V is the set of all nodes, including: (i) a subset ∅ 6= I ⊂ V of customers
with independent random demands Di > 0 (∀i ∈ I), each following a
non-negative and upper-bounded probability distribution, but whose
specific values are only revealed once the customer is visited; and, (ii)
a subset ∅ 6= W ⊂ V of potential depot facilities with opening costs
ow ≥ 0 and service capacities qw > 0 (∀w ∈ W ).

• A is the set of oriented arcs aij linking each pair of distinct nodes
i, j ∈ V .

• C is the matrix including the distance-based costs associated with
traversing each arc, cij = cji > 0. It is assumed that the triangle
inequality is satisfied.

Also, a virtually unlimited set K of homogeneous vehicles is available, each
of them with a loading capacity h > max{Di} and a fixed utilization cost
u ≥ 0. We assume a percentage of this capacity can be reserved to store a
safety stock (%SS) to respond to demand variability. In this context, the
following binary decision variables are considered:

• yw, which takes the value 1 if facility w ∈ W is open and 0 otherwise,

• xiw, which takes the value 1 if customer i ∈ I is assigned to facility
w ∈ W while it takes the value 0 otherwise, and

• fak, which takes the value 1 if arc a ∈ A belongs to the route covered
by vehicle k ∈ K, and 0 otherwise.

Notice that the total cost of a CLRPSD solution will be a random variable
resulting from the aggregation of: (i) the cost of opening the selected fa-
cilities; (ii) the cost associated with the use of a given number of vehicles;
and, (iii) the distance-based routing cost, which will depend on the specific
realizations of the Di variables. In particular, due to the random nature of
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customers’ demands, route failures will occur whenever the aggregated de-
mand in a route exceeds the vehicle capacity. After a route failure, costly
corrective actions will need to be considered.

Let ∅ 6= S ⊂ V be a subset of nodes, δ+(S) the set of arcs leaving S,
δ−(S) the set of arcs entering S, and L(S) the set of arcs with both ends in
S. Our main goal will be to minimize the expected total cost, which can be
formulated as:

min
∑
w∈W

owyw +
∑
k∈K

∑
a∈δ+(W )

ufak +
∑
k∈K

E[Rk] (1)

The term E[Rk] represents the expected value of the following piecewise
routing cost function:

Rk =

{ ∑
a∈A cafak if

∑
i∈I
∑

a∈δ−(i)E[Di]fak ≤ (1−%SS)h∑
a∈A cafak + ρ otherwise,

(2)

where ρ represents the cost of the corrective action required after a route
failure:

In the computational experiments carried out in this paper, the cost of
each corrective action is computed as ρ = min{costreactive, costpreventive},
where reactive and preventive refer to the following route-repairing strategies:

• Reactive strategy: once the vehicle reaches a customer whose demand
exceeds its current available load (including the safety stock), it com-
pletes a round-trip to the depot facility for a refill.

• Preventive strategy: after serving each customer, if the expected value
of the non-served demand in a route exceeds the vehicle load (including
the safety stock), the vehicle completes a ‘detour’ via the depot before
visiting the next customer.

It is assumed that visiting a depot for a truck reload is always possible
after a route failure, since depot facilities are refilled with new products once
the route distribution starts. In addition, the following constraints also apply
during the solution-design stage:
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∑
k∈K

∑
a∈δ−(i)

fak = 1 ∀i ∈ I (3)

∑
i∈I

∑
a∈δ−(i)

E[Di]fak ≤ (1−%SS)h ∀k ∈ K (4)

∑
a∈δ+(j)

fak −
∑

a∈δ−(j)

fak = 0 ∀k ∈ K, ∀j ∈ V (5)

∑
a∈δ+(i)

fak ≤ 1 ∀k ∈ K, ∀i ∈ I (6)

∑
a∈L(S)

fak ≤ |S| − 1 ∀S ⊆ I,∀k ∈ K (7)

∑
a∈δ+(w)∩δ−(I)

fak +
∑

a∈δ−(i)

fak ≤ 1 + xiw ∀i ∈ I,∀w ∈ W,∀k ∈ K (8)

∑
i∈I

E[Di]xiw ≤ qwyw ∀w ∈ W (9)

fak, xiw, yw ∈ {0, 1} ∀a ∈ A,∀k ∈ K, ∀i ∈ I,∀w ∈ W
(10)

Constraint (3) ensures that each customer is visited exactly once. Notice
that this constraint only applies during the solution-design stage, and it
might be violated during the execution stage if a route failure occurs and a
repairing action is required. If a reactive strategy is applied, the customer
will be visited twice. However, we assume in our formulation that the delivery
cannot be split —i.e., the customer is serviced just once—, but we account
for the associated cost of such “split” delivery in the objective function (ρ).
Expression (4) ensures vehicle capacity is not exceeded —i.e., the expected
demand to be serviced by each vehicle cannot exceed its designated loading
capacity, excluding the safety stock. Notice that, if safety stocks are not
considered (i.e., %SS = 0), this expression turns into a standard capacity
constraint. Inequalities (5) and (6) guarantee the continuity of each designed
route and the return of a route to its origin depot. Inequalities (7) are
subtour elimination constraints. Equations (8) guarantee that a customer is
only assigned to a facility if there are routes originating from that facility.
Constraint (9) specifies that the expected demand to be serviced from a depot
facility cannot exceed its initial capacity. Finally, expressions (10) define the
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decision variables.

4. Our SimILS Solving Approach

In order to efficiently solve the CLRPSD, we have designed a simheuris-
tic procedure that follows a SimILS framework (Grasas et al., 2016) and
also makes use of biased randomization techniques (Dominguez et al., 2016;
Grasas et al., 2017). The principles inspiring this method are: (i) to design
a relatively easy-to-implement algorithm that does not require a complex
parameter fine-tuning process —all parameter values have been obtained af-
ter a quick trial-and-error process; and, (ii) to allow a fast feedback among
the different sub-problems that compose the CLRP in order to provide an
‘integrated’ (non-sequential) approach. Our simheuristic algorithm consists
of two main stages (Figure 2). In the first stage, many facility-location maps
are quickly generated and tested using fast allocation and routing heuristics.
The most ‘promising’ maps obtained in this first stage are then sent to a
second stage, where the customer-to-facility allocation and vehicle routing
processes are further improved by using more intensive algorithms. Both
stages are explained next in more detail.

4.1. Generation of Feasible Solutions

In order to obtain base facility-location maps, the first step is to estimate
the number of facilities required to serve all customers’ demands. Hence, we
start by computing a lower bound (lb) on the number of facilities to be opened
by dividing the expected total demand by the maximum capacity in the set of
facilities. Next, nComb combinations of open facilities (nComb = 30 in our
experiments) are randomly generated for each value of l, with lb ≤ l ≤ |W |.
For each of these combinations, the associated CLRP is solved by means
of fast allocation and routing heuristics. The average cost is computed for
each l, and the l value with the lowest average cost is kept as a ‘reasonable’
number of facilities to be opened. At this point, the value of lb is updated
as the maximum between its original value and l− 1. Similarly, the value of
the upper bound ub is set to l+ 1. Then, we generate random sets of l∗ open
facilities (with lb ≤ l∗ ≤ ub), during at most nIters iterations (nIters = 1000
in our experiments). On each of these sets, the following allocation process
is applied:

• For each facility, customers are sorted in a list of candidates according
to the marginal-savings criterion proposed by Juan et al. (2015). This

11



Figure 2: Flowchart of our simheuristic algorithm.
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criterion computes the savings of assigning a customer i ∈ I to an
open facility w ∈ W with respect to assigning i to the best alternative
facility w∗ ∈ W \ {w}.

• Next, a diminishing probability of being selected is assigned to each
customer; i.e., the higher its position in the sorted list, the higher the
probability of being assigned to (or selected by) the corresponding fa-
cility. As it is usually the case in biased randomization (Grasas et al.,
2017), these probabilities are defined by employing a skewed probabil-
ity distribution. In our case, we use a geometric distribution since it
contains just one parameter, β, which during our experiments is set to
take random values in the interval (0.05, 0.80).

• Then, a round-robin selection process is started: the selection turn
iterates over the set of facilities, and the facility with the turn is allowed
to select a new customer from its sorted list according to the previously
established probabilities.

• When all customers have been allocated to a given facility, the fast
Clarke and Wright (1964) routing heuristic is applied to generate an
initial routing plan.

• Moreover, during the route planning we also adopt the strategy of using
safety stocks in the vehicles as a security buffer against higher-than-
expected demands. Accordingly, the recommended value of the safety-
stock percentage (%SS ), which is used as a protection against demand
uncertainty, is determined by the first simulation process described in
the flowchart. To set it, we run a ‘fast’ simulation (100 iterations) for
each instance, varying the %SS from 0 to 10%; then, for each value
of the %SS, we compute the results obtained by the simulation runs,
and keep the %SS producing the lowest estimated stochastic cost. In
addition, this methodology is simple to implement, so it could provide
a good first estimate of the required %SS in practical applications.

Once the initial iterations have been completed, a set of nBaseSols base
solutions (nBaseSols = 2 + bnodes/100c in our experiments) are kept to be
refined in the improvement stage.
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4.2. Solution Improvement
In this stage, the goal is to explore in more detail each of the base solu-

tions so that better customer-to-facility allocation and routing plans can be
identified in them. The pseudocode of this stage is presented in Algorithm 1.
During this stage, however, the open facilities in each map are not changed.
Two alternative procedures are employed. In the first one, Rand, the pertur-
bation operator randomly selects a set of customers and tries to reassign them
to another facility without violating its capacity. The number of customers
that are randomly selected ranges from 2 to the rounded average number of
customers in a route —which is instance-dependent. In the second perturba-
tion procedure the perturbation operator randomly exchanges the allocation
of p% of the customers. In our experiments, p ∈ {0.05, 0.1, . . . , 0.95}; i.e.,
we start with the lowest value of p, which is successively increased to ex-
plore different neighborhood sizes. In both versions of the algorithm, after
each new customer-to-facility allocation, a higher-quality routing process is
executed. In our case, this routing process is carried out by the SR-GCWS-
CS biased-randomized algorithm proposed by Juan et al. (2011), which also
uses a geometric distribution with parameter α —in our experiments, α is
randomly selected in the (0.07, 0.23) interval.

For each new solution, a local search procedure is also applied. As a
way to explore a richer neighborhood structure, our algorithm implements
four local search operators (Figure 3). In the Customer Swap Inter-Route
operator, customers are randomly chosen from different routes belonging
to the same facility and then swapped. The Inter-Depot Node Exchange
operator exchanges two nodes randomly selected from different facilities. The
2-Opt Inter-Route operator interchanges two chains of randomly selected
customers between different facilities. Finally, the Cross-Exchange operator
interchanges positions of 3 randomly selected and non-consecutive customers
from different facilities.

Once the local search process is completed, we quickly assess the obtained
solution under stochastic conditions by means of a limited MCS process (500
runs, in our experiments). Whenever a new solution outperforms the current
base solution of the iterated local search, the latter is updated with the for-
mer. Moreover, we also apply two different acceptance criteria to reduce the
chances of getting trapped in a local minimum during the search process: the
first one is a Demon-based criterion, in which we accept a non-improving so-
lution if its cost is lower or equal to 1.5 times the cost of the base solution; the
second one is a simulated annealing (SA) criterion (Henderson et al., 2003)
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Algorithm 1: Solution Improvement

1 Input: B, α // Set of Base Solutions, Parameter for

biased-randomized version of CWS

2 M ← ∅ // Set of Promising Solutions

3 for each baseSol ∈ B do
4 while stopping criterion not reached do
5 newMap← perturbate map (baseSol) // Using Rand or p%

6 newSol← route(newMap) // Using SR-GCWS-CS

7 improving ← true // Start Local Search

8 while improving do
9 newSol∗ ← localSearch(newSol, LSoperator)

10 if costs(newSol*) ≤ costs(newSol) then
11 newSol← newSol∗
12 add newSol to M

end
13 else

improving ← false
14 if acceptance criterion is met // Demon or SA

then
15 baseSol← newSol

end

end

end

end

end
16 return M
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Figure 3: Local search operators.
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for non-improving solutions based on an initial temperature t0 and a cooling
factor cf (in our experiments, t0 = 100 and cf = 0.994). Finally, a list con-
taining the most promising 10 solutions found so far is updated if necessary.
This procedure is repeated until a specified number of iterations (maxIter)
is reached. Finally, each of the elite solutions obtained goes through a more
intensive simulation process with longSim runs (longSim = 5000 in our ex-
periments), which allows to obtain better estimates for the total expected
cost and the reliability index.

The reliability reliabi of each route i in solution S is calculated as follows:

reliabi = (1−

longSim∑
n=0

RouteFailuresCount

longSim
) ∗ 100% (11)

Notice that each route in a solution can be seen as an independent com-
ponent of a series system —i.e., the proposed solution will fail if, and only if,
a failure occurs in any of its routes. Thus, the reliability index of a solution

S with R routes can be computed as
R∏
i=1

reliabi.

The procedure used to evaluate the quality of the solutions under stochas-
tic settings is depicted in Algorithm 2

5. Numerical Experiments and Results

The proposed SimILS algorithm has been coded as a Java application and
tested using a standard PC with a Core i5 @2.4GHz CPU and 8Gb RAM.
For comparison purposes, four different versions of our solving approach have
been considered (see Section 4.2 for a detailed description of each version):
Rand+Demon, Rand+SA, p%+Demon, and p%+SA. The algorithm has
been applied to solve both deterministic CLRP instances and the generated
CLRPSD ones. For the CLRP, three classical benchmark sets have been
used:

• Akca’s set, introduced by Akca et al. (2009), includes 12 instances with
5 depot facilities and 30-40 customers.

• Barreto’s set, proposed by Barreto (2004), contains a total of 17 in-
stances with 2 to 15 possible facility locations and 12 to 150 customers.

• Prodhon’s set, proposed by Belenguer et al. (2011), includes a total of 30
instances ranging from 5 to 10 potential facilities and 20-200 customers.
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Algorithm 2: Simulation of stochastic demands

1 Input: M , shortSim, longSim, V ar[di] ; // Set of promising

deterministic solutions, short and long simulation runs, and

demand variance level

2 E ← ∅ ; // Set of Elite Solutions

3 for each solution ∈ M do
4 run short simulation (shortSim)
5 estimate expectedStochCosts
6 if solution among best stochastic solutions then
7 include solution in E

end

end
8 for each solution ∈ E do
9 run long simulation (longSim)

end
10 refine expectedStochCosts
11 estimate realiabilityIndex
12 return Set of elite solutions for the stochastic problem
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5.1. CLRP with Deterministic Demands

In order to assess the competitiveness of our algorithm in the determinis-
tic scenario, we have tested it on each of the aforementioned benchmark sets.
Tables 1, 2 and 3 show the results obtained for Akca’s, Barreto’s, and Prod-
hon’s sets, respectively, after 10 executions of our algorithm —each execution
using a different seed for the pseudo-random number generator. For each in-
stance, the respective table provides the best-known solution (BKS) in the
literature, as well as the best and average gaps with respect to each variant of
our algorithm. The last row shows averages across all instances. Each BKS
corresponds to the best solution among the ones reported in the following
series of articles: Yu et al. (2010), Hemmelmayr et al. (2012), Ting and Chen
(2013), Contardo et al. (2014), Escobar et al. (2014), and Quintero-Araujo
et al. (2017a). Notice that all variants of the algorithm provide competitive
results for these sets. In the case of Akca’s set (Table 1), average gaps of our
best solutions range from 0.01% (Rand+SA) to 0.11% (Rand+Demon). Re-
garding Barreto’s set (Table 2), average gaps of our best solutions vary from
0.45% (Rand+Demon) to 0.96% (p%+SA). Finally, for Prodhon’s set (Ta-
ble 3), average gaps vary from 0.50% (Rand+Demon) to 0.64% (Rand+SA).
Regarding the gaps for the average of the best solutions reported for each of
the 10 runs, they vary from 0.36%(Rand+Demon) to 0.56%(p% + SA) for
Akca’s set, from 1.15%(Rand + Demon) to 1.56%(p% + SA) for Barreto’s
set, and 1.19%(Rand+Demon) to 1.32%(p% +Demon) for Prodhon’s set.

5.2. CLRP with Stochastic Demands

In order to test our approach in the CLRPSD, we have extended the classi-
cal benchmark sets so they can be used in a scenario under uncertainty. Thus,
if the original deterministic demand for customer i is given by di > 0, the
transformed demand is a random variable Di ≥ 0 which follows a log-normal
probability distribution with E[Di] = di. Also, in order to consider different
levels of uncertainty we have defined V ar[Di] = λ·di, with λ ∈ {0.05, 0.1, 0.2}
—low, medium, and high variance, respectively. Notice that the log-normal
distribution has been selected for running our experiments since it is a flexi-
ble distribution frequently used to model non-negative random variables. In
a real-life application, however, a best-fit analysis would need to be carried
out to decide the specific distribution to be used.

For every extended benchmark set and uncertainty level, Tables 4 to 9
provide the results obtained with our algorithm. As in the deterministic
case, 10 runs per instance were executed for each variant of the algorithm.
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Table 4: CLRPSD - Results with low variance level - Prodhon’s set.

Prodhon’s set
Instance Name OBS Reliability OBS Average BS
coord100-10-1 294626.39 65% 298047.40

coord100-10-1b 236796.93 91% 238549.54
coord100-10-2 245473.87 44% 246966.81

coord100-10-2b 205216.71 96% 205898.37
coord100-10-3 255349.96 65% 258758.80

coord100-10-3b 204979.01 89% 208624.85
coord100-5-1 279719.50 45% 282326.53

coord100-5-1b 214935.44 88% 216428.59
coord100-5-2 196738.12 36% 197925.23

coord100-5-2b 157470.09 89% 158186.99
coord100-5-3 203498.59 47% 205249.86

coord100-5-3b 152747.22 87% 153811.03
coord200-10-1 481720.03 34% 484073.75

coord200-10-1b 378394.52 85% 379109.76
coord200-10-2 451637.49 45% 452750.55

coord200-10-2b 374801.79 78% 375533.78
coord200-10-3 477448.21 29% 479216.40

coord200-10-3b 368657.09 88% 371277.35
coord20-5-1 55247.55 79% 55365.87

coord20-5-1b 39104.00 100% 39734.30
coord20-5-2 48909.34 100% 48912.14

coord20-5-2b 37542.00 100% 37542.20
coord50-5-1 90264.79 97% 90597.48

coord50-5-1b 63351.49 93% 63642.68
coord50-5-2 89288.34 62% 90247.94

coord50-5-2b 68337.99 91% 68738.73
coord50-5-2bBIS 51940.11 99% 52335.05
coord50-5-2BIS 85237.35 96% 86540.19

coord50-5-3 86556.65 87% 87841.87
coord50-5-3b 61856.79 99% 62492.06

Average 77%
23



Table 5: CLRPSD - Results with low variance level - Akca’s and Barreto’s sets.
Akca’s set

Instance Name OBS Reliability OBS Average BS
cr30x5a-1 821.61 94% 823.62
cr30x5a-2 821.45 100% 840.12
cr30x5a-3 706.82 85% 715.54
cr30x5b-1 881.14 98% 887.43
cr30x5b-2 825.32 100% 825.32
cr30x5b-3 886.32 96% 887.88
cr40x5a-1 929.16 100% 934.27
cr40x5a-2 888.80 100% 892.54
cr40x5a-3 953.31 93% 956.84
cr40x5b-1 1057.29 86% 1063.49
cr40x5b-2 981.59 100% 994.60
cr40x5b-3 972.10 92% 994.60
Average 95%

Barreto’s set
Instance Name OBS Reliability OBS Average BS
Christ-100x10 847.75 98% 858.19
Christ-50x5 566.59 95% 577.00

Christ-50x5 B 566.51 97% 585.83
Christ-75x10 814.09 97% 825.27

Daskin95-150x10 44109.22 100% 44647.12
Daskin95-88x8 358.46 100% 361.15
Gaskell-21x5 427.02 89% 430.26
Gaskell-22x5 585.11 100% 585.11
Gaskell-29x5 512.10 100% 512.10
Gaskell-32x5 562.28 100% 562.28

Gaskell-32x5-2 504.33 100% 504.73
Gaskell-36x5 460.37 100% 467.99

Min-27x5 3062.02 100% 3063.04
Min92-134x8 5775.24 83% 5855.16
Perl83-12x2 205.11 91% 205.23
Perl83-55x15 1131.99 33% 1141.42

Average 93%
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Table 6: CLRPSD - Results with medium variance level - Prodhon’s set.

Prodhon’s set
Instance Name OBS Reliability OBS Average BS
coord100-10-1 297607.12 43% 300028.21

coord100-10-1b 237622.33 70% 239227.00
coord100-10-2 247557.24 53% 248679.66

coord100-10-2b 205346.71 85% 206174.83
coord100-10-3 256562.35 39% 260163.32

coord100-10-3b 205140.82 95% 208880.07
coord100-5-1 283749.90 41% 285438.82

coord100-5-1b 215697.97 67% 217237.49
coord100-5-2 198599.72 50% 199418.38

coord100-5-2b 157849.70 66% 158710.05
coord100-5-3 204990.10 23% 207722.84

coord100-5-3b 153547.46 60% 154497.86
coord200-10-1 486959.87 14% 488476.75

coord200-10-1b 379549.65 54% 380307.91
coord200-10-2 454426.38 28% 455122.16

coord200-10-2b 375421.53 64% 376295.25
coord200-10-3 480682.29 17% 482799.15

coord200-10-3b 369208.51 78% 372648.54
coord20-5-1 55516.43 77% 55616.44

coord20-5-1b 39104.00 100% 39750.63
coord20-5-2 48957.36 97% 48968.73

coord20-5-2b 37547.58 100% 37555.71
coord50-5-1 90781.90 83% 91297.16

coord50-5-1b 63685.50 79% 64014.31
coord50-5-2 90211.48 67% 90824.84

coord50-5-2b 68632.11 76% 68958.79
coord50-5-2bBIS 52085.86 95% 52403.54
coord50-5-2BIS 85990.77 80% 87650.10

coord50-5-3 87089.14 67% 88526.45
coord50-5-3b 61920.53 100% 62647.16

Average 63%
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Table 7: CLRPSD - Results with medium variance level - Akca’s and Barreto’s set.

Akca’s set
Instance Name OBS Reliability OBS Average BS

cr30x5a-1 825.92 84% 829.83
cr30x5a-2 821.73 100% 839.13
cr30x5a-3 709.73 76% 722.64
cr30x5b-1 885.58 95% 892.31
cr30x5b-2 825.32 95% 825.35
cr30x5b-3 891.07 86% 899.05
cr40x5a-1 932.54 98% 935.74
cr40x5a-2 888.82 100% 895.68
cr40x5a-3 957.14 93% 961.14
cr40x5b-1 1064.10 98% 1069.48
cr40x5b-2 983.60 98% 999.85
cr40x5b-3 974.94 82% 988.03
Average 92%

Barreto’s set
Instance Name OBS Reliability OBS Average BS
Christ-100x10 850.60 92% 860.10
Christ-50x5 569.57 82% 579.64

Christ-50x5 B 571.01 98% 587.43
Christ-75x10 815.04 95% 828.04

Daskin95-150x10 44161.74 100% 44677.73
Daskin95-88x8 358.46 100% 361.20
Gaskell-21x5 429.31 78% 432.24
Gaskell-22x5 585.11 100% 585.11
Gaskell-29x5 512.10 100% 512.10
Gaskell-32x5 562.28 100% 562.28

Gaskell-32x5-2 504.33 100% 504.73
Gaskell-36x5 460.37 100% 467.99

Min-27x5 3062.02 100% 3062.64
Min92-134x8 5781.37 94% 5867.06
Perl83-12x2 206.07 83% 206.32
Perl83-55x15 1142.09 100% 1154.21

Average 90%
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Table 8: CLRPSD - Results with high variance level - Prodhon’s set.

Prodhon’s set
Instance Name OBS Reliability OBS Average BS
coord100-10-1 300916.95 34% 303196.53

coord100-10-1b 238526.38 83% 240545.39
coord100-10-2 249105.62 65% 250984.54

coord100-10-2b 205626.26 64% 207276.45
coord100-10-3 258139.10 35% 262784.79

coord100-10-3b 205602.99 76% 210441.76
coord100-5-1 287244.95 42% 290747.84

coord100-5-1b 216896.88 77% 219040.91
coord100-5-2 200123.80 52% 201997.61

coord100-5-2b 158467.00 61% 159804.59
coord100-5-3 208037.01 27% 210916.70

coord100-5-3b 154944.33 56% 156050.25
coord200-10-1 492303.88 21% 495255.29

coord200-10-1b 380938.57 46% 383186.23
coord200-10-2 458041.13 18% 459786.11

coord200-10-2b 377080.38 62% 378341.81
coord200-10-3 485618.47 17% 489186.88

coord200-10-3b 371555.87 45% 376079.51
coord20-5-1 55734.66 69% 56021.61

coord20-5-1b 39108.36 100% 39787.08
coord20-5-2 49181.15 87% 49204.32

coord20-5-2b 37633.17 97% 37650.04
coord50-5-1 91776.95 52% 92527.43

coord50-5-1b 64127.77 77% 64890.71
coord50-5-2 91555.55 45% 92282.31

coord50-5-2b 68743.07 94% 69508.43
coord50-5-2bBIS 52167.69 95% 52709.41
coord50-5-2BIS 88034.97 48% 90037.87

coord50-5-3 88004.55 65% 89730.70
coord50-5-3b 62129.90 86% 63020.86

Average 58%
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Table 9: CLRPSD - Results with high variance level - Akca’s and Barreto’s sets.

Akca’s set
Instance Name OBS Reliability OBS Average BS

cr30x5a-1 834.50 67% 842.36
cr30x5a-2 824.80 96% 844.54
cr30x5a-3 713.60 66% 727.94
cr30x5b-1 890.97 86% 901.08
cr30x5b-2 825.36 100% 825.46
cr30x5b-3 901.21 68% 919.42
cr40x5a-1 933.88 87% 940.62
cr40x5a-2 889.60 99% 898.82
cr40x5a-3 962.63 92% 967.14
cr40x5b-1 1071.89 89% 1079.06
cr40x5b-2 991.09 88% 1011.41
cr40x5b-3 980.73 69% 993.07
Average 84%

Barreto’s set
Instance Name OBS Reliability OBS Average BS
Christ-100x10 858.42 82% 865.80
Christ-50x5 574.55 62% 583.31

Christ-50x5 B 574.23 87% 590.07
Christ-75x10 821.27 85% 835.44

Daskin95-150x10 44222.57 100% 44636.13
Daskin95-88x8 358.46 100% 361.19
Gaskell-21x5 432.29 67% 435.38
Gaskell-22x5 585.11 100% 585.11
Gaskell-29x5 512.10 100% 512.10
Gaskell-32x5 562.28 100% 562.30

Gaskell-32x5-2 504.33 100% 504.76
Gaskell-36x5 460.49 100% 468.20

Min-27x5 3062.03 100% 3063.14
Min92-134x8 5802.19 74% 5889.38
Perl83-12x2 207.27 73% 207.42
Perl83-55x15 1145.02 100% 1165.06

Average 89%
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Table 10: CLRPSD - Comparison among variants - low variance level.
GAP w.r.t. OBS

rand + DEMON rand + SA p% + DEMON p% + SA
INSTANCE NAME PRODHON’S SET

coord100-10-1 0.00% 0.28% 0.21% 0.17%
coord100-10-2b 0.01% 0.01% 0.00% 0.16%
coord100-10-3 0.07% 0.00% 0.50% 0.16%

coord100-10-3b 0.18% 0.00% 0.35% 0.38%
coord100-5-1 0.13% 0.06% 0.15% 0.00%
coord100-5-2 0.09% 0.00% 0.12% 0.03%
coord100-5-2b 0.15% 0.15% 0.00% 0.01%
coord100-5-3 0.00% 0.00% 0.22% 0.22%
coord100-5-3b 0.00% 0.03% 0.02% 0.02%
coord200-10-1 0.15% 0.00% 0.18% 0.27%

coord200-10-1b 0.10% 0.06% 0.00% 0.01%
coord200-10-2 0.04% 0.04% 0.06% 0.00%

coord200-10-2b 0.03% 0.08% 0.00% 0.06%
coord200-10-3 0.08% 0.00% 0.19% 0.07%

coord200-10-3b 0.20% 0.10% 0.05% 0.00%
coord20-5-1 0.00% 0.00% 0.13% 0.11%

coord20-5-1b 0.00% 0.00% 0.00% 0.00%
coord20-5-2 0.00% 0.00% 0.00% 0.00%
coord50-5-1 0.03% 0.02% 0.00% 0.00%

coord50-5-1b 0.07% 0.07% 0.00% 0.00%
coord50-5-2 0.00% 0.00% 0.80% 1.12%

coord50-5-2b 0.00% 0.01% 0.04% 0.15%
coord50-5-2bBIS 0.01% 0.00% 0.01% 0.32%
coord50-5-2BIS 0.16% 0.15% 0.00% 0.40%

coord50-5-3 0.60% 0.63% 0.23% 0.00%
coord50-5-3b 0.13% 0.43% 0.00% 0.12%
AVERAGE 0.08% 0.09% 0.13% 0.16%

NUMBER OF BS 10 13 6 6
AKCA’S SET

cr30x5a-1 0.00% 2.14% 2.25% 2.50%
cr30x5a-2 0.00% 0.00% 0.00% 0.00%
cr30x5a-3 0.04% 0.00% 0.03% 0.03%
cr30x5b-1 0.00% 0.01% 0.01% 0.25%
cr30x5b-2 0.00% 0.00% 0.00% 0.00%
cr30x5b-3 0.01% 0.00% 0.00% 0.01%
cr40x5a-1 0.34% 0.56% 0.00% 0.11%
cr40x5a-2 0.00% 0.00% 0.26% 0.26%
cr40x5a-3 0.00% 0.00% 0.14% 0.13%
cr40x5b-1 0.00% 0.18% 0.18% 0.00%
cr40x5b-2 0.00% 0.00% 0.01% 0.01%
cr40x5b-3 0.61% 2.12% 0.00% 0.68%

AVERAGE 0.08% 0.42% 0.24% 0.33%
NUMBER OF BS 6 6 5 3

BARRETO’S SET
Christ-100x10 0.40% 0.00% 0.43% 0.47%
Christ-50x5 0.03% 0.68% 0.00% 1.36%

Christ-50x5 B 0.00% 0.69% 1.04% 2.19%
Christ-75x10 0.00% 0.72% 0.35% 0.35%

Daskin95-150x10 0.57% 0.46% 0.80% 0.00%
Daskin95-88x8 0.00% 0.00% 0.00% 0.01%
Gaskell-21x5 0.04% 0.00% 0.05% 0.05%
Gaskell-22x5 0.00% 0.00% 0.00% 0.00%
Gaskell-29x5 0.00% 0.00% 0.00% 0.00%
Gaskell-32x5 0.00% 0.00% 0.00% 0.00%

Gaskell-32x5-2 0.00% 0.00% 0.00% 0.00%
Gaskell-36x5 0.00% 0.00% 0.00% 0.00%

Min-27x5 0.00% 0.00% 0.00% 0.00%
Min92-134x8 0.06% 0.00% 0.06% 0.05%
Perl83-12x2 0.00% 0.00% 0.00% 0.00%
Perl83-55x15 0.00% 0.06% 0.19% 0.46%
AVERAGE 0.07% 0.16% 0.18% 0.31%

NUMBER OF BS 11 11 9 8
AVERAGE 0.08% 0.18% 0.17% 0.24%
TOTAL BS 27 30 20 17
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Each table shows: the best-found solution for each instance of the CLRPSD
(OBS) across the four algorithm variants; its expected reliability (Reliability
OBS), which is the probability that the designed distribution plan can be
executed without route failures; and, the average cost obtained across all runs
(Average BS). It is important to mention that, for the same instance with
different variability levels, the recommended %SS determined via simulation
might vary; e.g., in the case of instance Coord100-10-1, the recommended
safety stock percentages are 0.0%, 0.0%, and 2.0% for low, medium, and
high variability levels, respectively.

Table 10 provides a comparison among the 4 versions of our algorithm for
a low variance scenario. For each instance, it compares the results provided
by each algorithm variant against our best stochastic solution across methods.
Notice that all variants provide solutions of similar quality, both in terms of
expected stochastic costs and expected reliability . The rand + SA method
is the one that provides the highest number of best solutions (30 out of
59 instances), while rand + DEMON is the version providing the lowest
average gaps for all sets. On the other hand, the p% + SA version seems
to have the poorest performance in terms of both average gap and number
of best solutions obtained. Our strategy of using simulation to determine
the “ideal” value of the safety stock percentage seems to work well, since
expected total costs are not too different from those of the deterministic
solutions. Also, for the low-variability level scenario, we observe that the
average reliability for Akca’s and Barreto’s instances is over 90%. In fact,
except for 3 instances in each set, reliability stays over 90% in all cases.
Comparatively, in the case of Prodhon’s instances, reliability is below 80%.
Regarding these results for Prodhon’s set, it is important to remember that
our goal is to minimize total expected cost associated with the distribution
plan, and not explicitly reliability. Sometimes, it might pay off to accept a
lower reliability value if that implies using less vehicles, especially if fixed
costs per vehicle are significant. This is the case in Prodhon’s set, which
explains the low reliability levels obtained for these instances.

To illustrate the relationship between the total expected cost and relia-
bility, we have solved a particular instance (Cr30x5a-2 ) using different safety
stock policies. To do so, we have used the algorithm that provides our best
solution for this instance under the high variance setting (rand + Demon).
The behaviors of stochastic costs and reliability are shown in Figure 4. It
can be seen that, without safety stocks, the expected costs are high, while
the associated reliability is around 60%. Using a 2% safety stock level pro-
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vides the best solution in terms of expected stochastic costs. In addition, the
associated reliability is 96%. Using a 10% safety stock level raises reliability
up to almost 100%, but it also increases the total expected cost due to the
additional routes and vehicles required.

Figure 4: Behavior of costs and reliability with different safety stock policies.

For the same instance, Figure 5 shows the variability of solutions obtained
with different safety stock policies when using the rand+Demon variant of
the algorithm. As can be seen, the solution for a 2% safety stock level is
better —in terms of total expected cost— than the solution obtained with
4% safety stock level. However, the latter has less variability —i.e., it is a
low-risk policy. Thus, a risk-averse decision maker would prefer the latter
policy, while a risk-oriented one would select the former.

To show the quality of our simheuristic method, we have compared the
best deterministic solution found (BDS), tested in a stochastic setting with
high variability, against our best stochastic solution (BSS). To do so, we use
six different instances from the different datasets, and we compare the results
obtained in terms of both expected stochastic costs and expected reliability.
Table 11 provides a cost comparison, while Figure 6 shows a graphical com-
parison in terms of reliability. According to these results, it is clear that the

31



Figure 5: Comparison of best stochastic solutions for different safety stock levels.

solutions obtained by means of our simheuristic approach outperform the
deterministic ones when deployed in a scenario with uncertainty. Regarding
instances 1 and 5, the number of used vehicles is the same for BSS and BDS,
while for instances 2 and 4, the stochastic solution uses one more vehicle than
the corresponding BDS. In both situations, the BSS provides slightly higher
routing costs, which are then compensated by much lower route failures and,
therefore, less stochastic costs and higher reliability levels.

Finally, for instance coord100-5-1, Figure 7 shows a multiple boxplot of
total costs for different solutions: the best deterministic solution (BDS) when
applied in a stochastic scenario with high variability, and the two stochastic
solutions with the lowest expected total costs provided by our algorithm
(BSS1 and BSS2) for the same scenario. Again, notice that our simheuristic
algorithm is able to provide better results in terms of expected total costs as
well as variability.

6. Conclusions

The present work analyzes the capacitated location routing problem with
stochastic demands, which can cause route failures leading to costly cor-
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Table 11: Comparison of expected stochastic costs among BDS and BSS under stochastic
settings.

Instance Name
BDS

Expected Costs
(1)

BSS
Expected Cost

(2)

Gap in Costs
(2) - (1)

1 Coord200-10-2b 378409.86 377080.38 -0.35%
2 Perl83-55x15 1150.84 1139.42 -0.99%
3 Perl83-12x2 207.28 207.27 0.00%
4 Cr40x5b-3 992.83 980.73 -1.22%
5 Coord100-5-1 287689.72 287244.95 -0.15%
6 Cr30x5b-2 825.39 825.36 0.00%

Average -0.45%

Figure 6: Comparison of reliability among BDS and BSS.
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Figure 7: Comparison between deterministic and stochastic solutions for instance
coord100-5-1 with high variability.

rective actions. In this paper, customers’ demands are assumed to follow
independent log-normal probability distributions with different variability
levels. We have proposed four different versions of a simheuristic algorithm
to solve the aforementioned problem. Our algorithm combines an iterated
local search metaheuristic with Monte Carlo simulation. In addition, it also
makes use of biased randomization techniques. Four variants using two dif-
ferent perturbation operators and two different acceptance criteria have also
been tested. Among them, the variant combining random selection of cus-
tomers and a Demon-based acceptance criterion (rand + Demon) seems to
provide an excellent performance in all tested instances. In addition, it is rel-
atively easy to implement, since it does not require many parameters. Hence,
we would recommend this one for most practical applications.

Three sets of classical benchmark instances have been adapted and ex-
tended in order to perform the computational experiments. The results for
the deterministic version of the problem show the competitiveness of the pro-
posed algorithm. In the case of stochastic demands, we have implemented
Monte Carlo simulation to estimate the value of the safety stock strategy to
be utilized as security buffer to face demand uncertainty. In addition, sim-
ulation has also been used to estimate stochastic costs and reliability levels
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for the obtained solutions.
In future research work, we plan to extend the simheuristic algorithm so

it can also consider stochastic travel times and other corrective strategies
(including the possibility of splitting the service). Additionally, it could be
interesting to analyze a multi-objective version of the problem in which goals
other than minimizing expected total costs can be targeted; e.g., minimizing
variability of the stochastic solution.
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