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ABSTRACT 

This paper proposes a hybrid approach for solving the Multi-Depot Vehicle Routing Problem 

(MDVRP) with a limited number of identical vehicles per depot.  Our approach, which only 

uses a few parameters, combines ‘biased randomization’ –use of non-symmetric probability 

distributions to generate randomness– with the Iterated Local Search (ILS) metaheuristic.  Two 

biased-randomized processes are employed at different stages of the ILS framework in order to: 

(a) assign customers to depots following a randomized priority criterion –this allows for fast 

generation of alternative allocation maps; and (b) improving routing solutions associated with a 

‘promising’ allocation map –this is done by randomizing the classical savings heuristic.  These 

biased-randomized processes rely on the use of the geometric probability distribution, which is 

characterized by a single and bounded parameter.  Being an approach with few parameters, our 

algorithm does not require troublesome fine-tuning processes, which tend to be time consuming.  

Using standard benchmarks, the computational experiments show the efficiency of the proposed 

algorithm.  Despite its hybrid nature, our approach is relatively easy to implement and can be 

parallelized in a very natural way, which makes it an interesting alternative for practical 

applications of the MDVRP.  

 

Keywords: Multi-Depot Vehicle Routing Problem, Metaheuristics, Randomized Algorithms, 

Biased Randomization, Iterated Local Search, Parallelization of Heuristics. 

 

1. INTRODUCTION 

The Capacitated Vehicle Routing Problem (CVRP) is probably the most popular routing 

problem in the literature on combinatorial optimization.  The basic goal is to find an optimal set 

of routes for a fleet of vehicles so that a set of customers’ demands is satisfied.  Usually all 

vehicles are considered to be identical (homogeneous fleet).  All routes begin and end at one 

depot, where all resources are initially located.  Typically each vehicle has a maximum loading 

capacity, a single vehicle supplies each customer, and a vehicle cannot stop twice at the same 



customer.  The classical objective is to minimize the costs related to distances travelled by 

vehicles and/or the times spent during the distribution process, while satisfying the associated 

constraints. 

As a generalization of the Travelling Salesman Problem, the CVRP which has been studied 

for decades, is NP-hard (Prins, 2004; Laporte, 2007).  Nevertheless, it is still attracting a great 

amount of attention from researchers due to its potential applications, both to real-life scenarios 

and to the development of new algorithms, optimization methods, and metaheuristics for 

solving other combinatorial problems (Toth and Vigo, 2002; Golden et al., 2008).  Different 

approaches to the CVRP have been explored, ranging from the use of pure optimization 

methods, such as mixed-integer linear programming –mainly used for solving small and 

medium-size problems–, to the use of heuristics and metaheuristics that provide near-optimal 

solutions for medium- and large-size problems in reasonable computing times.  One CVRP 

variant which usually can be found in many real-life scenarios is the so-called Multi-Depot 

Vehicle Routing Problem (MDVRP).  This is a challenging problem since it integrates a 

combinatorial assignment problem –which customers are to be assigned to each depot– with the 

several CVRPs that must be solved for each customers-depot allocation map (Figure 1).  In an 

MDVRP, allocation and routing issues are often interrelated.  Thus, it is not trivial to find the 

customers-depots allocation map that provides the optimal routing solution for the entire set of 

customers and depots. 

 

 
Figure 1: A medium-size MDVRP with 96 customers (circles) and 4 depots (squares). 

 

The MDVRP may be formally described as an extension of the CVRP.  It is defined as a 

complete undirected graph   G ={V , E}, where   V ={Vd ,Vc} is the set of nodes including the 
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depots (Vd) and the customers (Vc), and E is the set of edges connecting all nodes in V.  Each 

customer in Vc has a positive demand to be satisfied.  Each edge in E has an associated cost cij = 

cji > 0, usually computed as the distance between customers i and j (all distances are assumed to 

be symmetric); cik is the distance-based cost between the customer  i ∈Vc  and the depot 

 k ∈Vd .  For the MDVRP, a solution is a set of routes in which each route starts at one depot in 

Vd, connects one or more customers in Vc, and ends at the same depot, without exceeding the 

capacity of the vehicle. Also routes that start at one depot and end at another depot are not 

allowed. 

The number of vehicles based at each depot (m) may be fixed or unlimited.  The former 

defines a harder problem, since it adds an additional constraint and there is also no guarantee 

that a feasible solution exists (Chao et al., 1993).  The latter simplifies the modelling and 

solving of the MDVRP.  However, in a realistic scenario, the number of available vehicles to 

satisfy customers’ demands is usually limited.  As it will be shown in the experimental section, 

our approach is able to efficiently deal with both cases, either with or without a limitation in the 

number of vehicles per depot. 

This paper proposes a hybrid approach that combines an ILS-like metaheuristic (Lourenço 

et al., 2003, 2010) with biased-randomization techniques (Juan et al., 2009, 2011b) to deal 

with the MDVRP.  This hybrid framework has been recently used to develop efficient 

algorithms in both scheduling and routing problems (Dominguez et al., 2014; Juan et al., 

2014).  By randomizing some steps in a deterministic heuristic, it is transformed into a 

probabilistic procedure.  Then, it can be run multiple times –either in sequential or parallel 

mode– in order to obtain different outcomes or solutions.  Moreover, it is possible to perform 

this randomization process without losing the logic behind the deterministic heuristic by 

employing an asymmetric (biased) probability distribution.  Therefore, alternative solutions of 

similar quality can be easily generated.  Being an algorithm with few parameters, our approach 

represents an interesting alternative to other state-of-the-art metaheuristics, which usually 

require more cumbersome and time-costly fine-tuning processes.  In practice, these approaches 

are usually harder to implement and often not reproducible. To the best of our knowledge, it is 

the first time that biased-randomization techniques are used to efficiently solve the multi-depot 

version of the VRP.  In effect, while most existing metaheuristics for the MDVRP are heavily 

based on local search, the proposed method –similarly to GRASP and Ant Colony Optimization 

approaches–, relies on biased constructive procedures to generate new solutions.  This class of 

methods has been less studied in the MDVRP literature and the paper shows they can offer 

competitive results when compared to other approaches known from the literature that require 

more complex and time-consuming parameter fine-tuning processes. 
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The rest of this article is structured as follows.  The next section reviews the literature 

published on the MDVRP and the different approaches adopted to solve it.  Next, the biased 

randomization issues directly related to our approach are discussed.  Afterwards, the main 

characteristics of our algorithm are outlined and explained, and some implementation details are 

given.  Then, we present and analyze the results obtained from the application of our approach 

to some benchmark instances.  Some parallelization issues are also considered and analyzed.  

Finally, the conclusion section summarizes the main contributions of our work. 

 

2. LITERATURE REVIEW 

The literature for the MDVRP dates back over 40 years.  In the 1970s and 1980s, several 

heuristics for the MDVRP were proposed.  For instance, Tillman and Cain (1972) develop an 

approach based on the well-known Clarke and Wright Savings (CWS) procedure (Clarke and 

Wright, 1964). Thus, in Wren and Holliday (1972) the authors define a two-step approach 

able to solve instances with two depots.  In Gillett and Johnson (1976) a three-step multi-

terminal sweep algorithm is developed and applied to solve eleven benchmark instances.  

Golden et al. (1977) solve the MDVRP using two different heuristics: an improved version of 

the aforementioned Tillman and Cain’s savings procedure, and a two-step extension of this 

approach intended for larger problems.  Raft (1982) develops a three-step heuristic, which is 

used to solve four MDVRP benchmark instances.  Also, Laporte et al. (1984) adopt an exact 

approach to the problem and propose a branch-and-bound algorithm that is used to solve 31 

randomly generated test instances of up to 25 nodes including depots and customers.   

Recently developed metaheuristics for the MDVRP were proposed, which includes Tabu 

Search, Genetic Algorithm, Adaptive Large Neighborhood Search, among others. In Chao et al. 

(1993), the authors developed a record-to-record improvement heuristic for the MDVRP.  

Renaud et al. (1996) and Cordeau et al. (1997) both proposed a Tabu Search (TS) 

metaheuristics for solving the MDVRP.  In particular, the TS algorithm developed by the 

former authors was tested on 23 benchmark instances with up to 360 nodes, obtaining the best-

known solutions for all of them after completing a fine-tuning process.  These authors also 

proposed a simplified version of their algorithm, which was able to obtain the best-known 

solutions for most instances in a reasonable time.  Cordeau et al. (1997) obtained even better 

solutions than those obtained by Renaud et al. (1996).  Thangiah and Salhi (2001) developed 

a clustering method based on a Genetic Algorithm aimed to solve the MDVRP.  Chan et al. 

(2001) addressed an MDVRP with both location and routing decisions and a high degree of 

uncertainty in the demands.  In their work they were able to solve a large-scale stochastic 

location-routing problem.  Pisinger and Ropke (2007) proposed an Adaptive Large 
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Neighborhood Search (ALNS) algorithm for solving the MDVRP and other VRPs.  This 

method was tested on 33 benchmark instances, improving the best-known solution in 15 cases.  

However, the approach uses up to 14 parameters that are fine-tuned on a benchmark set 

containing 16 problems.  Crevier et al. (2007) addressed an extension of the problem where 

vehicles may be replenished at intermediate depots along their routes.  Ho et al. (2008) 

developed two Hybrid Genetic Algorithms (HGAs).  In their approaches, these authors combine 

three different heuristics: the CWS, the Nearest Neighbor, and the Iterated Swap.  The former 

two heuristics are used to generate initial solutions, whereas the last one is used to improve the 

solutions, including parents and offspring.  A computational study was carried out to compare 

both HGAs.  The HGA1, which generates initial solutions randomly, was proven to be inferior 

to HGA2, which applied the aforementioned heuristics to generate initial solutions.  Vidal et al. 

(2012) also proposed a HGA to deal with different variants of the VRP, including the MDVRP.  

Using this approach, the authors identified the best-known solutions, including the optimal ones, 

or some new best solutions for all 33 benchmark instances described either in Cordeau et al. 

(1997) or in Pisinger and Ropke (2007).  Nevertheless, the HGA requires an in-deep 

adjustment of its components and the corresponding parameters. Also, Mirabi et al. (2010) 

propose three probabilistic hybrid heuristics, combining elements from both constructive 

heuristic search and improvement techniques, to cope with the MDVRP.  Experiments were run 

on a number of randomly generated test problems of varying depots and up to 200 customers.  

Dondo and Cerdá (2007) present a novel three-phase approach for the Multi-Depot VRP with 

Time Windows and Heterogeneous vehicles (MDHVRPTW).  This approach has been also used 

to provide an initial solution for a Large Scale Neighborhood (LSN) search method (Dondo and 

Cerdá, 2009).  Ceselli et al. (2009) and Bettinelli et al. (2011) consider the MDHVRPTW, too.  

The former introduces an exact column generation algorithm, while the latter proposes a branch-

and-cut-and-price algorithm able to solve instances with up to 72 customers to proven 

optimality.  Finally, Cordeau and Maischberger (2012) introduce an iterated TS heuristic to 

solve four different routing problems (the classical VRP, the periodic VRP, the multi-depot 

VRP, and the site-dependent VRP), combining a simple perturbation mechanism and TS as the 

local search procedure within an ILS framework.  The perturbation mechanism is inspired from 

the cluster removal heuristic used in the ALNS (Pisinger and Ropke, 2007).  They also 

describe a parallel implementation of the heuristic to take advantage of multiple-core 

processors. 
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3. RANDOMIZATION ISSUES IN OUR APPROACH 

In the approach presented in this paper, we use biased-randomization techniques at several 

stages of the ILS framework.  As it is shown in this work, integrating these techniques inside a 

metaheuristic framework provides an efficient mechanism to solve challenging combinatorial 

optimization problems like the MDVRP. 

Roughly speaking, Monte Carlo simulation or random sampling can be defined as a set of 

techniques that make use of random numbers and probability distributions to solve certain 

stochastic and deterministic problems.  When properly combined with heuristic techniques, 

random sampling has proved to be extremely useful for solving stochastic VRPs (Juan et al., 

2011a, 2013).  Likewise, approaches combining biased-randomization with heuristics can be 

used for solving efficiently deterministic routing problems, such as the CVRP.  In particular, the 

SR-GCWS-CS algorithm (Juan et al., 2009, 2011b) introduces the geometric distribution to 

induce a biased-randomized process into the aforementioned CWS heuristic.  With this 

mechanism, a new feasible and potentially good solution is generated every time the biased-

randomized version of the CWS heuristic is executed.  Thus, a set of different feasible solutions 

may be obtained by iterating this fast constructive method.  By construction, each one of these 

feasible solutions consists of a set of round-trip routes from the depot that satisfy all problem 

constraints and node demands.  This strategy can also be used to generate initial solutions for 

other metaheuristic approaches (Guimarans et al., 2011; Juan et al., 2014).   

The key of this process is how to randomize a given heuristic, the CWS in this case, so that 

the resulting solutions are still competitive in terms of associated costs.  As in many other 

heuristics, at each step of the solution construction process, the CWS procedure chooses the first 

element of a list that has been previously sorted according to some logical criterion.  In the 

particular case of the CWS heuristic, the first element in the list corresponds to the edge with 

the highest savings value.  To partially avoid this greedy behavior without losing the general 

sense of the heuristic, the biased-randomized process assigns a selection probability to each 

element in the sorted list.  In the case of the CWS, a different selection probability is assigned to 

each edge in the savings list.  Of course, this probability should be coherent with the sorting 

criterion, e.g., the savings value associated with each edge.  Thus, edges with a higher position 

in the list have a higher probability to be selected at the current iteration.  Finally, this selection 

process is to be done without introducing too many parameters in the algorithm.  Otherwise, it 

would require a fine-tuning process, which tends to be non-trivial, time-consuming, and often 

instance-dependent. 

In order to reach the above-mentioned goals, biased probability functions, such as the 

single-parameter geometric distribution or the parameter-free decreasing triangular distribution, 

may be used during the randomized selection process.  Therefore, if a geometric distribution is 

https://www.researchgate.net/publication/220642679_Combining_probabilistic_algorithms_Constraint_Programming_and_Lagrangian_Relaxation_to_solve_the_Vehicle_Routing_Problem?el=1_x_8&enrichId=rgreq-563dc039b539d7b4d44d59cf3c6ce9ca-XXX&enrichSource=Y292ZXJQYWdlOzI2MTk1MDQwODtBUzoxMDYzMjgxMTQ1OTc4ODlAMTQwMjM2MjAwNjY1OA==
https://www.researchgate.net/publication/220636222_On_the_Use_of_Monte_Carlo_Simulation_Cache_and_Splitting_Techniques_to_Improve_the_Clarke_and_Wright_Savings_Heuristics?el=1_x_8&enrichId=rgreq-563dc039b539d7b4d44d59cf3c6ce9ca-XXX&enrichSource=Y292ZXJQYWdlOzI2MTk1MDQwODtBUzoxMDYzMjgxMTQ1OTc4ODlAMTQwMjM2MjAwNjY1OA==


applied, elements (edges in this case) with a higher position in the (savings) sorted list are more 

likely to be selected, but the exact probabilities depend on the specific value assigned to the 

distribution parameter p (0 < p < 1).  Figure 2 shows a comparison of two geometric 

probability distributions with different values of p.  Their values are shown for the first elements 

in the sorted list of elements.  It should be noticed that using relatively low values of p (e.g.,  p 

= 0.1) implies that more elements in the list are potentially eligible.  On the other hand, using 

higher values for this parameter (e.g.,  p = 0.4) reduces the number of potentially eligible 

elements from the list.  Finally, as the parameter  p gets closer to 1, the greedy behavior of the 

heuristic is retrieved. 

 

 
Figure 2: Geometric probability distributions using different values of the parameter p. 

 

In this work, a similar process is also applied for randomizing the selection of customers 

serviced by each depot (customers-depots allocation maps).  Nodes are assigned to depots 

according to distance- and capacity-related criteria, as explained later in the text.  In both cases, 

all nodes are included in a sorted list, so at each step a depot selects the first element according 

to the applied criterion.  Again, the geometric distribution is introduced to add some biased-

randomized behavior to nodes selection.  Therefore, different potentially good customers-depots 

allocation maps may be quickly generated by employing this simple mechanism, which uses a 

single parameter.  Notice, however, that the value of the parameter p  corresponding to this 

geometric distribution may be higher than the one employed to perform the randomization of 



the CWS heuristic.  This is due to the fact that the list of nodes to be assigned to a depot will be 

considerably shorter than the list of eligible edges in the CWS heuristic.  At this point, it is 

important to notice that if a classical uniform randomization is used to drive the selection of 

customers by each depot, then any customer can be randomly assigned to any depot without 

following any distance-based priority strategy.  Accordingly, the resulting customers-depots 

allocation maps are likely to be inferior in quality to the ones obtained using the proposed 

biased randomization approach –which uses a distance-based strategy as discussed next.  In a 

series of experiments using common random numbers (to reduce the variance or random noise) 

and 1-minute computing time per instance, we have observed that the approach employing 

biased randomization –with the right parameter value– provides equal or better results in all 33 

benchmark instances than the approach using uniform randomization, with an average gap being 

1.82%. 

 

4. AN OVERVIEW OF OUR APPROACH 

The proposed approach to tackle the MDVRP is based on an Iterated Local Search framework 

(Lourenço et al., 2010) and the asymmetric randomization techniques described in the previous 

section.  Pseudo-code 1 shows how the biased randomization is integrated inside the traditional 

ILS framework.  Basically, it is used to: (a) generate a random –but still efficient– initial 

solution, typically based on a classical heuristic; and (b) incorporate a ‘common sense’ (not 

uniform) policy or strategy to the randomness inside the perturbation process.  A more detailed 

overview if provided by the flowchart diagram in Figure 3, which is described next.   

 

procedure Iterated Local Search with Biased Randomization 

  s0 = GenerateInitialSolution(biasedRand) % random but efficient 

  s* = LocalSearch(s0) 

  repeat 

    s' = Perturbation(s*, history, biasedRand) % policy-oriented 

    s*' = LocalSearch(s') 

    s* = AcceptanceCriterion(s*, s*', history) 

  until termination condition met 

end 

Pseudo-code 1: including biased randomization inside the ILS framework. 

 



 
 

Figure 3: Flow diagram of the proposed approach. 
 

First, a priority list of potentially eligible nodes is computed for each depot.  Thus, dk V∀ ∈ , the 

list associated with k contains all nodes, but they are sorted according to a distance-based 

criterion which depends on k.  The distance-based criterion we use is called marginal savings, 



and it is computed as follows ci V∀ ∈ , where ci
l represents the distance-based cost from the 

customer i to each depot l in Vd : 

(a) We first compute the minimum cost of assigning customer i to k*, the best alternative 

depot to k, i.e.: { }
*

\
min { }

d

k l
i i

l V k
c c

∀ ∈
= . 

(b) Then, we compute k
iµ , the marginal savings in cost associated with assigning customer 

i to depot k instead of assigning i to k*: *k k k
i i ic cµ = − . 

 

Notice that these marginal savings can be either positive (if k happens to be the ‘closest’ depot 

to customer i) or negative (otherwise).  According to this, nodes that are much closer to one 

depot k than to the other depots will present ‘high’ marginal-savings values for depot k and, 

accordingly will become a ‘priority’ for this depot –i.e. these nodes will occupy the top 

positions in the sorted priority list of depot k.  On the contrary, nodes located in between two or 

more depots will present ‘low’ marginal-savings values for all depots, and they will not become 

a priority for any depot.  The nodes list associated with each depot is sorted following this 

criterion.  Then, the list is randomized through the geometric distribution as described in the 

previous section.  The randomized list is used to assign nodes to depots.  This can be done using 

different alternative criteria and, in fact, our method uses the following procedures at the 

starting stage as a way to generate initial nodes-depots assignment maps: (i) a round-robin 

tournament criterion following consecutive turns among depots is used to guarantee that a 

different depot selects a new node at a time –as far as it still has enough capacity to serve the 

associated demand; (ii) the same round robin criterion but this time a depot is randomly selected 

at each round for the node-selection turn; and (iii) at each round, the depot with the most 

(remaining) serving capacity selects the next node from its priority list –this criterion tends to 

generate quite ‘balanced’ allocation maps, i.e. customers-depots configurations in which the 

total demand to be served is similarly distributed among all depots.  As described in the next 

section, for most instances it might be worthy to consider the different aforementioned criteria 

when generating the allocation maps.  Once a depots-nodes allocation map is generated, a 

complete initial solution is obtained by individually solving each routing problem using the 

CWS heuristic, which is very fast and provides a reasonable good initial solution.  Before 

entering the iterative process, the base and best solutions are updated with the values of the 

obtained initial solution. 

At the next step, the ILS procedure is started.  In this process, the base solution is perturbed 

by reallocating a certain percentage p* of nodes in different depots.  This way, a new allocation 

map is generated throughout a construction-destruction process.  The reallocation of nodes into 

depots is guided according to the biased-randomized criteria introduced in the previous section.   



The new routing problems associated with the new allocation map are solved again throughout 

the CWS heuristic, thus generating a new complete solution.  If this new solution does not fulfill 

the limitation on the number of vehicles, then it is discarded and the random reallocation 

process is restarted.  Otherwise, the base and best solutions are accordingly updated.  

Specifically, whenever the solution obtained is better than the current base solution, the base 

solution is updated.  In addition, if the new solution is better than the best solution found so far, 

it is further improved by means of a fast local search process (details on this process are 

included in the next section).  Afterwards, the base and best solutions are updated with the 

values of the new refined solution.  Furthermore, in case the obtained solution is worse than the 

current base solution, an acceptance criterion is defined.  This acceptance criterion allows a non-

improving solution to be accepted as a new base solution if certain conditions are met; 

specifically, the algorithm allows downhill moves as far as the last movement in the previous 

iteration from x to !x was an improvement –i.e. ( ) ( )f x f x! <  for a minimization problem–, 

and the downhill move from x!  to the new solution x!! is not greater than the last improvement 

–i.e., | ( ) ( ) | ( ) ( )f x f x f x f x!! ! !− < − .  This criterion is introduced in order to facilitate the 

method to escape from local minima and explore different regions of the search space. 

During the ILS procedure, the top t (e.g. t = 5) best solutions found so far are saved as 

‘promising’ solutions –notice that the routing of these solutions has been obtained using the fast 

CWS heuristic.  Each of these top solutions is then further improved by means of a post-

optimization process, which makes use of an efficient routing algorithm.  In our case, the SR-

GCWS-CS is employed (Juan et al., 2011b).  

 

5. DETAILED PSEUDO-CODE 

This section contains some technical details regarding our approach.  In order to facilitate the 

actual implementation of the proposed methodology, we provide a pseudo-code version with a 

high level of details.  The main procedure in our approach is shown in Pseudo-code 2.  First, a 

priority list of potentially eligible nodes is calculated for each depot (lines 1 to 3) following the 

distance-savings criterion described before and detailed in Pseudo-code 3.  At the second step 

of the algorithm, an initial solution is computed (lines 4 to 15).  The priority list is biased-

randomized using a geometric distribution (line 9).  Next, a customers-depots allocation map is 

generated according to the randomized list of priorities (line 10).  This process is detailed in 

Pseudo-code 4.  Then, the corresponding routing problems are solved individually using the 

fast CWS routing heuristic (line 11).  This process is outlined in Pseudo-code 5.  Note that a 

feasibility checking might be needed in order to iterate the initial solution construction process 

until a feasible initial solution is obtained. 
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Regarding Pseudo-code 4, it should be noticed that different strategies or policies –

previously described– are used in order to generate the depots-nodes allocation maps.  As 

mentioned before, the last strategy is more conservative in the sense that it tends to provide 

more balanced maps.  Balanced maps are especially helpful when dealing with instances in 

which feasible routing solutions might be difficult to find due to the limitation in the number of 

available vehicles at each depot.  Using these policies, generation of new promising maps is an 

extremely fast process.  In our implementation, the three policies described above are run and 

the best routing solution obtained with them is used as the initial base and best solutions (lines 

16 to 18). 

The ILS process, which is started at step 4 (lines 19 to 42), uses a time-based loop.  At 

each iteration, a perturbation operator (lines 20 to 23) is applied on the current base-allocation 

map, which has an associated routing solution.  Intuitively, this base-allocation configuration 

can be seen as a colored map with different colors for each depot and its corresponding nodes.  

The proposed perturbation operator generates a new random colored map in which a given 

percentage p* of customers has changed colors according to a biased-randomized process (line 

23).  That is, each depot selects in turn –following any of the aforementioned policies– a node 

previously removed from the base-allocation map (line 21).  The selection is random but, as 

explained before, it uses the geometric probability distribution to follow the logic of the priority 

list.  In other words, most customers will keep their current color (assigned depot) and just some 

of them (a given percentage p*) will change their color in a reasonable way, i.e. according to its 

priority list.  Each time a new allocation map is generated, the CWS routing procedure is 

applied to solve the resulting CVRPs (line 24).  Note that a fast method is needed at this step in 

order to avoid spending an excessive time on the routing process of a single colored map –

which could be a low quality one–, instead of trying different colored maps to look for the most 

promising ones.  As in any ILS framework, the base and best solutions are conveniently 

updated.  If the solution obtained by means of the perturbation process overcomes the best one 

so far, a more thorough local search (line 33) is carried out before any update is done.  This 

process may be seen as an intensified exploration around potentially good solutions identified 

during the search.  In our case, it is based on the classical 2-opt operator defined for the CVRP 

(Lin, 1965).  A demon-based acceptance criterion (Talbi, 2009) is also introduced to reduce the 

risk of getting trapped in a local minimum during the search process (lines 36 to 40).  Finally, at 

step 5 (lines 43 to 55), the best solution found so far using a fast routing heuristic is improved 

by using an efficient routing metaheuristic.  Since the metaheuristic might noticeably reduce the 

routing costs provided by the heuristic, it is recommended to apply the metaheuristic not only to 

the best-found solution, but also to a reduced list of the top solutions found so far –it might 

happen, for instance, than the second-ranked solution in the reduced list of candidates improves 

the first-ranked one after applying the metaheuristic.  In our approach, we employ the SR-
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GCWS-CS method (Juan et al., 2009, 2011b).  The main structure of this method is 

summarized in Pseudo-code 6.  The SR-GCWS-CS algorithm also makes use of a biased-

randomization strategy plus two specific local search processes.  Details on these local search 

processes can be found in the aforementioned reference.  Note, however, that any other efficient 

routing algorithm could be used here to improve the ‘promising’ solutions obtained during the 

ILS stage.  Eventually, the ILS-MD procedure will return the best solution found so far. 
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procedure ILS-MD(nodes, depots, vCap, nVeh, maxRouteDistance, pM, pR, p*) 
%  Where 0 < pM, pR < 1 represent parameters in two geometric distributions,  
%  and 0 < p* < 100 sets the % of nodes to be extracted during the perturbation stage. 
%   1. COMPUTE A PRIORITY LIST OF NODES FOR EACH DEPOT. 
%   For each depot, compute its sorted list of “priority” nodes. 
01  for each depot in depots do 
02    priorityList(depot) <- calcPriorityList(nodes, depots, depot) 
03  end for 
%   2. GENERATE A FEASIBLE INITIAL SOLUTION. 
04  maxDemand <- vCap * nVeh  % max demand any depot can satisfy 
05  feasible <- false 
06  while {feasible is false} do 
      % 2.1 Generate a new map in which priority lists are biased-randomized. 
07    map <- emptyMap  % reset map for each depot 
08    freeNodes <- copy(nodes) 
09    randPriorityList <- biasedRand(priorityList, pM)  % use a geometric distribution 
10    map <- generateNewMap(map, freeNodes, randPriorityList, maxDemand) 
      % 2.2 Try computing a feasible routing solution for the new map. 
11    sol <- tryGenFeasibleSol(map, vCap, nVeh, maxRouteDistance) 
12    if {sol is not empty} then 
13      feasible <- true 
14    end if 
15  end while 
%   3. UPDATE BASE AND BEST SOLUTIONS. 
16  baseSol <- sol 
17  baseMap <- getMap(baseSol) 
18  bestSol <- baseSol 
%   4. START AN ITERATIVE LOCAL SEARCH PROCESS. 
19  while {termination condition is not met} do  % e.g. time-based condition 
      % 4.1 Perturbation stage with a destruction-construction process. 
20    map <- extractNodes(baseMap, p*, pM)   
21    freeNodes <- substract(getNodes(map), nodes)  % nodes not in map 
22    randPriorityList <- biasedRand(priorityList, pM)  
23    map <- generateNewMap(map, freeNodes, randPriorityList, maxDemand) 
      % 4.2 Try computing a feasible routing solution for the new map. 
24    sol <- tryGenFeasibleSol(map, vCap, nVeh, maxRouteDistance) 
25    if {sol is not empty} then 
26      map <- getMap(sol) 
        % 4.3 Update baseSol and bestSol if appropriate. 
27      delta <- cost(sol) – cost(baseSol) 
28      if {delta < 0} then   
29        baseMap <- map 
30        baseSol <- sol 
31        credit <- delta * (-1) 
32        if {cost(sol) < cost(bestSol)} then 
33          bestSol <- fastLocalSearch(sol) 
34          topSols <- add(bestSol, topSols)  % list of top solutions 
35        end if 
36      else if {delta > 0} and {delta <= credit} then  % demon-based acceptance. 
37        credit <- 0 
38        baseMap <- map 
39        baseSol <- sol 
40      end if 
41    end if 
42  end while 
%   5. APPLY A ROUTING-REFINEMENT PROCESS TO THE TOP SOLUTIONS. 
43  for each sol in topSols do 
44    for each depot in depots do 
45      subSol <- getSubSol(depot, sol) 
46      subMap <- getMap(subSol) 
47      newSubSol <- SR-GCWS-CS(subMap, vCap, maxRouteDistance, pR) 
48      if {cost(newSubSol) < cost(subSol)} and {nVehIn(newSubSol) <= nVeh} then 
49        sol <- update(depot, newSubSol, sol) 
50      end if 
51    end for 
52    if {cost(sol) < cost(bestSol)} then 
53      bestSol <- sol 
54    end if 
55  end for 
56 return bestSol 
end procedure 
 

Pseudo-code 2: main ILS-MD procedure. 



 
 
procedure calcPriorityList(nodes, depots, depot) 
01  for each node in nodes do 
      % Compute distance marginal-savings w.r.t. the best alternative assignment. 
02    ms(node) <- dist(node, alternativeDepot(node)) - dist(node, depot) 
03    priorityList <- add(ms(node), priorityList) 
04  end for 
    % Sort priorityList from highest to lowest marginal savings. 
05  priorityList <- sort(priorityList) 
06  return priorityList 
end procedure 
 

Pseudo-code 3: procedure to calculate the priority list of each depot. 

 
 
procedure generateNewMap(map, freeNodes, randPriorityList, maxDemand) 
01  depots <- getDepots(map) 
02  for each depot in depots do 
03    subMap(depot) <- getSubMap(map, depot)  % during perturbation, subMap is not empty 
04  end for 
    % use the least-loaded-depot-first criterion to assign nodes to depots 
05  while {freeNodes is not empty} do 
06    depot <- selectLeastLoadedDepot(depots) % other criteria are also possible 
07    nextNode <- selectNextNode(freeNodes, randPriorityList(depot)) 
08    subMap(depot) <- add(nextNode, subMap(depot)) 
09    freeNodes <- delete(nextNode, freeNodes) 
10  end while 
    % update the subMaps into the map 
11  for each depot in depots do 
12    map <- update(subMap(depot), map) 
13  end for 
14  return map 
end procedure 
 

Pseudo-code 4: procedure to generate a new allocation map. 

 
 
procedure tryGenFeasibleSol(map, vCap, nVeh, maxRouteDistance) 
01  sol <- emptySol 
02  depots <- getDepots(map) 
03  for each depot in depots do 
04    subMap <- getSubMap(depot) 
05    if {subMap is not in cache} then  % use a hash table cache 
        % use the fast CWS heuristic with maxRouteDistance 
06      subSol <- cwsAlg(subMap, vCap, maxRouteDistance) 
07    else  % use the fast biased-randomized version of the CWS  
08      subSol <- randCWS(subMap, vCap, maxRouteDistance, pR) 
09    end if 
10    if {nVehIn(subSol) > nVeh} then  % no feasible solution found 
11       return emptySol 
12    else 
13       sol <- add(subSol, sol) 
14       subSol <- checkCache(subSol, nVeh)  % either improve subSol or update cache 
15    end if 
16  end for 
17  return sol 
end procedure 
 

Pseudo-code 5: procedure to generate a new solution from a map. 



 
 
procedure SR-GCWS-CS(subMap, vCap, maxRouteDistance, pR) 
%  This routing procedure is detailed in Juan et al. (2011b). 
01  nodes <- getNodes(subMap) 
02  depot <- getDepot(subMap) 
    % Compute an initial solution using the CWS heuristic. 
03  cwsSol <- cwsAlg(subMap, vCap, maxRouteDistance) 
04  bestSol <- cwsSol 
05  nIter <- 0 
06  while {termination condition is not met} do 
      % Generate a newSol using a biased-randomized version of the CWS heuristic. 
07    newSol <- randCWS(subMap, vCap, maxRouteDistance, pR) 
      % Improve newSol using two different local search processes. 
08    newSol <- routeCache(newSol)  % either improve newSol or cache of routes. 
09    if {cost(newSol) < cost(cwsSol)} then  % only for “promising” solutions. 
10      newSol <- splitting(newSol)  % divide-and-conquer strategy. 
11      if {cost(newSol) < cost(bestSol)} then 
12        bestSol <- newSol 
13      end if 
14    end if 
15  end while 
16  return bestSol  
end procedure 
 

Pseudo-code 6: summarized version of the SR-GCWS-CS routing algorithm. 

 

6. COMPUTATIONAL EXPERIMENTS 

The methodology described in this paper has been implemented as a Java application.  Being an 

interpreted language, Java-based programs do not execute as fast as other compiled programs, 

such as those developed in C or C++.  Nevertheless, Java permits a rapid, platform-independent, 

development of object-oriented prototypes that can be used to test the potential of an algorithm.  

A standard personal computer, Intel QuadCore i5 CPU at 3.2 GHz and 4 GB RAM with 

Windows XP, was used to perform all tests. 

In order to test the efficiency of the proposed method and compare it with other existing 

approaches, we use 33 MDVRP benchmark instances described in Cordeau et al. (1997) –

instances p01 to p23– and in Pisinger and Ropke (2007) –instances pr01 to pr10.  These 

classical instances consider a limited fleet of available vehicles at each depot.  It should be 

noted that some of the instances have a maximum route length allowed and that, for those cases, 

routes are only allowed to be merged in the savings algorithm as far as this maximum route 

length is not exceeded. Each instance was run 5 times with a maximum number of iterations of 

300,000.  After some preliminary tests, the parameter for the pseudo-geometric distribution 

related to the allocation problem is randomly chosen in the interval (0.5, 0.8).  Similarly, the 

corresponding parameter for the routing algorithm is randomly chosen within the interval (0.1, 

0.2).  Finally, the degree of perturbation at each iteration of the ILS is selected at random in the 

range 10% - 50%.  Notice that we only performed a rough and quick fine-tuning process for the 

aforementioned parameters since we wanted to test if our algorithm was able to provide 
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competitive results without investing too much time calibrating the parameters.  The results of 

these tests are summarized in Table 1. 

 

Table 1: Results obtained for 33 MDVRP benchmark instances. 

INSTANCE OTHER APPROACHES OUR ILS APPROACH 

Inst. n m d 
Max 
Route 
Length 

Q CGL97      
(1) 

PR07         
(2) 

VCGLR11 
(3) 

OBS        
(4) 

Gap        
(%)         
(1)-(4) 

Gap        
(%)         
(2)-(4) 

Gap        
(%)         
(3)-(4) 

p01$ 50$ 4$ 4$ n/a$ 80$ 576.87$ 576.87$ 576.87$ 576.87$ 0.00%$ 0.00%$ 0.00% 
p02$ 50$ 2$ 4$ n/a$ 160$ 473.53$ 473.53$ 473.53$ 473.87$ 0.07%$ 0.07%$ 0.07% 
p03$ 75$ 3$ 5$ n/a$ 140$ 641.19$ 641.19$ 641.19$ 641.19$ 0.00%$ 0.00%$ 0.00% 
p04$ 100$ 8$ 2$ n/a$ 100$ 1001.59$ 1001.04$ 1001.04$ 1003.45$ 0.19%$ 0.24%$ 0.24% 
p05$ 100$ 5$ 2$ n/a$ 200$ 750.03$ 751.26$ 750.03$ 751.9$ 0.25%$ 0.09%$ 0.25% 
p06$ 100$ 6$ 3$ n/a$ 100$ 876.5$ 876.7$ 876.5$ 876.5$ 0.00%$ 20.02%$ 0.00% 
p07$ 100$ 4$ 4$ n/a$ 100$ 885.8$ 881.97$ 881.97$ 885.19$ 20.07%$ 0.37%$ 0.37% 
p08$ 249$ 14$ 2$ 310$ 500$ 4437.68$ 4387.38$ 4372.78$ 4409.23$ 20.64%$ 0.50%$ 0.83% 
p09$ 249$ 12$ 3$ 310$ 500$ 3900.22$ 3873.64$ 3858.66$ 3882.58$ 20.45%$ 0.23%$ 0.62% 
p10$ 249$ 8$ 4$ 310$ 500$ 3663.02$ 3650.04$ 3631.11$ 3646.67$ 20.45%$ 20.09%$ 0.43% 
p11$ 249$ 6$ 5$ 310$ 500$ 3554.18$ 3546.06$ 3546.06$ 3547.09$ 20.20%$ 0.03%$ 0.03% 
p12$ 80$ 5$ 2$ n/a$ 60$ 1318.95$ 1318.95$ 1318.95$ 1318.95$ 0.00%$ 0.00%$ 0.00% 
p13$ 80$ 5$ 2$ 200$ 60$ 1318.95$ 1318.95$ 1318.95$ 1318.95$ 0.00%$ 0.00%$ 0.00% 
p14$ 80$ 5$ 2$ 180$ 60$ 1360.12$ 1360.12$ 1360.12$ 1360.12$ 0.00%$ 0.00%$ 0.00% 
p15$ 160$ 5$ 4$ n/a$ 60$ 2505.42$ 2505.42$ 2505.42$ 2511.92$ 0.26%$ 0.26%$ 0.26% 
p16$ 160$ 5$ 4$ 200$ 60$ 2572.23$ 2572.23$ 2572.23$ 2573.78$ 0.06%$ 0.06%$ 0.06% 
p17$ 160$ 5$ 4$ 180$ 60$ 2709.09$ 2709.09$ 2709.09$ 2709.09$ 0.00%$ 0.00%$ 0.00% 
p18$ 240$ 5$ 6$ n/a$ 60$ 3702.85$ 3702.85$ 3702.85$ 3702.85$ 0.00%$ 0.00%$ 0.00% 
p19$ 240$ 5$ 6$ 200$ 60$ 3827.06$ 3827.06$ 3827.06$ 3840.91$ 0.36%$ 0.36%$ 0.36% 
p20$ 240$ 5$ 6$ 180$ 60$ 4058.07$ 4058.07$ 4058.07$ 4063.64$ 0.14%$ 0.14%$ 0.14% 
p21$ 360$ 5$ 9$ n/a$ 60$ 5474.84$ 5474.84$ 5474.84$ 5574.63$ 1.82%$ 1.82%$ 1.82% 
p22$ 360$ 5$ 9$ 200$ 60$ 5702.16$ 5702.16$ 5702.16$ 5737.04$ 0.61%$ 0.61%$ 0.61% 
p23$ 360$ 5$ 9$ 180$ 60$ 6095.46$ 6078.75$ 6078.75$ 6084.32$ 20.18%$ 0.09%$ 0.09% 

Average gap p01 – p23! ! ! ! ! 0.08%! 0.21%! 0.27%  

pr01$ 48$ 1$ 4$ 500$ 200$ 2$ 861.32$ 861.32$ 861.32$ 2$ 0.00%$ 0.00% 
pr02$ 96$ 2$ 4$ 480$ 195$ 2$ 1307.34$ 1307.34$ 1307.34$ 2$ 0.00%$ 0.00% 
pr03$ 144$ 3$ 4$ 460$ 190$ 2$ 1806.53$ 1803.80$ 1803.80$ 2$ 20.15%$ 0.00% 
pr04$ 192$ 4$ 4$ 440$ 185$ 2$ 2060.93$ 2058.31$ 2072.10$ 2$ 0.54%$ 0.67% 
pr05$ 240$ 5$ 4$ 420$ 180$ 2$ 2337.84$ 2331.20$ 2342.20$ 2$ 0.19%$ 0.47% 
pr06$ 288$ 6$ 4$ 400$ 175$ 2$ 2685.35$ 2676.30$ 2687.73$ 2$ 0.09%$ 0.43% 
pr07$ 72$ 1$ 6$ 500$ 200$ 2$ 1089.56$ 1089.56$ 1089.56$ 2$ 0.00%$ 0.00% 
pr08$ 144$ 2$ 6$ 475$ 190$ 2$ 1664.85$ 1664.85$ 1668.08$ 2$ 0.19%$ 0.19% 
pr09$ 216$ 3$ 6$ 450$ 180$ 2$ 2136.42$ 2133.20$ 2133.56$ 2$ 20.13%$ 0.02% 
pr10$ 288$ 4$ 6$ 425$ 170$ 2$ 2889.49$ 2868.26$ 2889.70$ 2$ 0.01%$ 0.75% 

Average gap p01 – p23! ! ! ! 0.07%! 0.25% 

Average gaps for all problems! ! ! 0.17%! 0.26% 
 



For each instance, the information included in this table is the following: instance name, number 

of customers cV , vehicles available at each depot vn+k ∈Vd , number of depots dV , maximum 

route length allowed L, and vehicles maximum capacity Q.  Afterwards, we present the results 

obtained by Cordeau et al. (1997), referenced as CGL97, Pisinger and Ropke (2007), marked 

as PR07, and Vidal et al. (2012), shown as VCGLR11.  Finally, the best solutions obtained by 

means of the proposed approach are presented.  The gaps between our best solution (OBS) and 

the different presented references are also included for comparison.  As it can be observed, our 

approach has been able to match 12 out of the 33 previous best-known solutions.  Indeed, the 

average gaps are reasonably low for both sets of instances (0.27% for instances p1-p23 and 

0.25% for instances pr1-pr10).  In addition, these results are achieved in acceptable 

computational times (277 seconds, on average using a Java code) regarding the size of the 

considered instances, the fact that only one standard computer has been used, and also that only 

5 runs of the algorithm have been executed.  In other words, our approach is able to provide 

quite competitive solutions in reasonably low computational times.  Notice that the average gap 

between our approach and the PR07 one is just 0.17%.  In fact, our approach is able to improve 

several individual solutions provided by the PR07 method (see individual negative gaps).  

Similarly, the average gap between our approach and the VCGLR11 one is just of 0.26%.  At 

this point it is important to recall that our approach contains very few parameters, and also that 

it is relatively easy to understand, implement, and use in practical (real-life) situations.  On the 

contrary, the PR07 approach contains 14 parameters, while the VCGLR11 employs 5 

components –each of them using one or more parameters– and 3 rules which require from a 

complex and time-consuming fine-tuning process.   

Figure 4 presents a visual comparison between the best-known solution and our best 

solution for the instance p21.  As it may be observed, our solution presents a more balanced 

distribution of customers and routes, an often-desirable characteristic in most realistic cases.  

For example, in the best-known solution all depots service at least one route with a low number 

of customers.  Although some depots have associated short routes, in our solution the travelled 

distances are in general more equitably distributed.  In addition, our solution is more balanced in 

terms of the demands assigned to each depot.  This characteristic is justified because of the use 

of the less-loaded criterion to choose which depot selects the next node to be allocated. 

Finally, we analyzed how the quality of the results generated by our approach vary when 

considering different levels of computational time and number of parallel agents –or 

independent runs of the algorithm.  These tests were performed on the p16, p20, pr02, and the 

pr08 instances.  For each instance, 30 runs of the proposed algorithm were run, each of them 

initialized with a different random seed.  The allowed execution time (in seconds) was adjusted 

according to the instance size.  At each selected time interval, the best solution found was 



registered.  Then, for each combination of time and number of parallel runs, the gap between the 

best solution found and the best-known one was computed.   

 

 
Figure 4: Visual comparison between BKS and OBS for the instance p21. 

 

Figures 5 to 8 display the results of this test for the cited instances.  Some conclusions may be 

inferred from the results of these parallelization tests.  First, notice that the initial solution we 

generate as starting point for our algorithm is greatly improved in very short time.  Even with 

one single agent (parallel run with a given random seed) and very few seconds, the gap is 

significantly decreased.  After this steep improvement, the solution evolves more smoothly with 



time.  In addition, it may be observed that the gap decreases faster as the number of parallel 

agents grows.  Note that using several parallel runs of the algorithm (each of them using a 

different seed for the random number generator) provides in all cases better results than a single 

run executed for much more time.  In other words, parallelization seems to offer clear benefits 

to this type of algorithms.  In fact, through simple parallelization it is possible to obtain ‘high-

quality’ solutions (average gap below 1% with respect to the best-known solutions) in almost 

‘real times’ (a few seconds) for all considered instances. 

 

 
Figure 5: Gap for instance p16, with varying time and number of parallel agents. 

 

 



Figure 6: Gap for instance p20, with varying time and number of parallel agents. 
 

 
Figure 7: Gap for instance pr02, with varying time and number of parallel agents. 

 

 
Figure 8: Gap for instance pr08, with varying time and number of parallel agents. 

 

7. CONCLUSIONS 

This paper has presented an efficient yet relatively simple approach for solving the Multi-Depot 

VRP.  The proposed method combines biased randomization with an Iterated Local Search 

metaheuristic framework.  As the numerical experiments show, our approach is able to provide 



competitive results when compared to other state-of-the-art methods, both in terms of solution 

quality and computational times. 

One of the main advantages of our approach is its relative simplicity: the method is 

relatively easy to implement and understand, and it needs little fine-tuning process.  Only three 

parameters need to be adjusted: (a) one for the geometric distribution guiding the randomization 

of the customers-depots allocation process (perturbation operator); (b) one for the geometric 

distribution guiding the randomization of the routing heuristic (edge-selection process); and (c) 

the size of the destruction-construction process (also part of the perturbation operator) inside the 

metaheuristic.  In contrast, most state-of-the-art approaches introduce a high number of 

parameters that should be adjusted, often requiring complex and time-consuming fine-tuning 

processes.  Additionally, the paper contributes to the literature on the use of constructive 

methods for solving the Multi-Depot VRP.  In effect, while most existing metaheuristics for this 

problem are heavily based on local search, the proposed method relies on biased constructive 

procedures to generate new solutions.  This shows that other similar approaches –e.g. GRASP 

or Ant Colony Optimization– could also be employed in this field in order to generate 

competitive results. 

The presented methodology is suitable to be run in parallel.  By simply changing the values 

of the seed of the random number generator, several instances of the algorithm can be 

simultaneously run.  As shown in the experiments, this approach leads to ‘high-quality’ 

solutions (average gap less than 1% with respect to best-known solutions) in almost ‘real-time’ 

(a few seconds).  Thus, the aforementioned properties make our approach an excellent 

alternative for most practical applications of the considered problem.  Finally, it is worthy to 

notice that the combination of Iterated Local Search and biased randomization strategies 

constitutes an innovative and relatively easy-to-implement framework that can be used to solve 

a wide range of combinatorial optimization problems. 
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