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Abstract
This paper presents a methodology based on the Variable
Neighbourhood Search metaheuristic, applied to the Capaci-
tated Vehicle Routing Problem. The presented approach uses
Constraint Programming and Lagrangean Relaxation meth-
ods in order to improve algorithm’s efficiency. The com-
plete problem is decomposed into two separated submodels,
to which the mentioned techniques are applied to obtain a
complete solution. With this decomposition, the methodol-
ogy provides a quick initial solution which is rapidly im-
proved by means of metaheuristics’ iterative process. Con-
straint Programming and Lagrangean Relaxation are also em-
bedded within this structure, in order to ensure constraints
satisfaction and to reduce the calculation burden. Remark-
able results have been obtained using this methodology, in-
cluding a new best-known solution for a rarely solved 200-
customers test instance and a better alternative solution for
another benchmark problem.

1. INTRODUCTION
The Vehicle Routing Problem (VRP) is among the most

popular research areas in combinatorial optimization. Rout-
ing vehicles to collect or deliver goods is a problem which
many companies face each day, laying at the heart of many
distribution systems. In practice, objectives and constraints
are highly variable and, most of times, complex. In fact,
real problems often require a specific modelling and solving
methodology. For these reasons, several variants of the VRP
have been proposed and studied since it was first defined by
Dantzig and Ramser [11]. Among them, the Capacitated Ve-
hicle Routing Problem (CVRP) is the most basic VRP, assum-
ing a fleet of vehicles with homogeneous capacity housed in a
single depot. It is so a generalization of the Travelling Sales-
man Problem (TSP) [15] and is therefore NP-hard [20].

Several formulations and exact algorithms have been pro-
posed to solve the CVRP. However, for large instances the
time required to solve them becomes absolutely prohibitive
due to its NP-hardness. Thus, exact algorithms may only deal
with small instances, up to 100 customers [10], solving them

to optimality. Numerous heuristics and metaheuristics have
also been studied for different VRP variants. In most cases,
these methods may solve larger instances but loosing optimal-
ity guarantees. Among metaheuristics, Variable Neighbour-
hood Search (VNS) [16] is a quite recent method with far
less application examples in VRP research. However, some
interesting results have been obtained even applying the sim-
plest VNS algorithm [9] [14] [19]. For this reason, VNS has
been selected as the general framework where to embed Con-
straint Programming (CP) and Lagrangean Relaxation (LR)
approaches to the CVRP. By using these two well-known
paradigms within the VNS local search process, calculation
time may be reduced with respect to classical VNS schemes.

The remainder of this article is structured as follows. Sec-
tion 2 provides a general overview of CVRP formulation, em-
phasizing the decomposition used in the proposed method.
Section 3 is devoted to the proposed method, based on the
VNS metaheuristic; the general algorithm, moves used within
its structure and the adapted LR-method are introduced in this
section. Next, computational results are presented and dis-
cussed. Finally, some conclusions are outlined in the last sec-
tion.

2. PROBLEM FORMULATION
The symmetric CVRP can be considered as a complete

undirected graph G = (I,E), connecting the vertex set I =
{1,2, ...,n} through a set of undirected edges E = {(i, j)|i, j ∈
I}. The edge ei j ∈ E has associated a travel cost ci j, supposed
to be the lowest cost route connecting node i to node j. Each
vertex i ∈ I−{1} has a nonnegative demand qi, while vertex
1 corresponds to a depot without associated demand. A fixed
fleet of m identical vehicles V = {1,2, ...,m}, each of capacity
Q, is available at the depot to accomplish the required tasks.

Solving the CVRP consists of determining a set of m routes
whose total travel cost is minimised and such that: (a) each
customer is visited exactly once by a single vehicle, (b) each
route starts and ends at the depot and (c) the total demand of
the customers assigned to a route does not exceed the vehi-
cle capacity Q. Therefore, a solution to the CVRP is a set of
m cycles sharing a common vertex at the depot. Usually, the
fleet size is not fixed and minimizing the total number of used
vehicles becomes an additional objective.

In the proposed model, the CVRP has been divided into

mailto:Rosa.Herrero@uab.cat
mailto:Daniel.Guimarans@uab.cat
mailto:JuanJose.Ramos@uab.cat
mailto:Silvia.Padron@uab.cat


two subproblems, concerning customers’ allocation and rout-
ing optimization separately. The first is aimed to assign cus-
tomers to the minimum number of required vehicles fulfilling
capacity limitations. The latter is used to solve each indepen-
dent route to optimality, giving the best solution for a par-
ticular allocation. Thus, routing optimization process can be
viewed as solving a set of m independent symmetric TSP. CP
is used to find a feasible solution in terms of capacity, while
routing problems are solved by using LR.

2.1. Capacity problem
Constraint Programming is a powerful paradigm for rep-

resenting and solving a wide range of combinatorial prob-
lems. Problems are expressed in terms of three entities: vari-
ables, their corresponding domains and constraints relating
them. The problems can then be solved using complete tech-
niques such as depth-first search for satisfaction and branch
and bound for optimization, or even tailored search methods
for specific problems [18].

The proposed customers’ allocation subproblem uses two
lists of variables. A list R of size n, with integer domains
Ri ∈ [1..m]|i∈ I, indicates which vehicle is serving the ith cus-
tomer. Qv is a list of m variables with real domain Qv ∈ [0..Q]
used to trace the cumulative capacity at each one of the m
routes. Therefore, capacity constraints are enforced through
domains definition since Qv cannot get higher values than the
maximum capacity Q.

A set of dimension m× n of binary variables B has been
introduced to relate R and Qv values. For each vehicle v ∈V ,
a list of n binary variables Bvi | i ∈ I is defined, taking value 1
whenever customer i is assigned to vehicle v and 0 otherwise.
Since each customer i is visited by a single vehicle, for all
values of v the binary variable Bvi can take value 1 only once.
This constraint is expressed in terms of the global constraint
cardinality atmost [6] aiming to ensure a faster propagation
[7].

The binary set B and allocation variables R are related
through the following statement:

Ri = ri→ Brii = 1 ∀i ∈ I (1)

Expression (1) states that the ith element of the ri list of B
will have value 1 whenever the ith component of R takes value
ri. The global constraint cardinality atmost ensures propaga-
tion so all values of Bvi v ∈ V \ ri are set to 0 automatically.
Therefore, cumulative capacities can be traced simply by us-
ing the following equation:

Qv = ∑
i∈I

Bviqi ∀v ∈V (2)

The proposed formulation is used to find a partial initial
solution fulfilling capacity constraints. By solving resultant
routing problems, which are always feasible because they do

not contain any additional constraints, a complete initial so-
lution may be easily obtained in most cases. Thus, capacity
problem’s goal is to find a feasible solution with the minimum
number of required vehicles. With this objective, a depth-first
search method is applied to find a feasible solution that uses
all available vehicles. A vehicle is removed from the list and
the process is repeated recursively. The algorithm stops when
unfeasibility is reached, returning the last feasible solution
found in the previous iteration.

2.2. Routing Problem
The routing problem, tackled for each vehicle separately,

can be viewed as a TSP instance. For each vehicle v, the re-
lated TSP can be considered as a complete undirected graph
G = (Iv,Ev), connecting assigned customers Iv = {i ∈ I|Ri =
v} through a set of undirected edges Ev = {(i, j)∈E|i, j∈ Iv}.
The solution is a path connected by edges belonging to Ev that
starts and ends at the depot (i = 1) and visits all assigned cus-
tomers.

The proposed mathematical formulation requires defining
the binary variable xe to denote that the edge ei j ∈ Ev is used
in the path. That is xe = 1 if customer j is visited immediately
after i; otherwise xe = 0. Thus, the formulation for the TSP
problem is as follows:

min ∑
e∈Ev

cexe (3)

subject to

∑
e∈δ(i)

xe = 2 , ∀i ∈ Iv (4)

∑
e∈Ev(S)

xe ≤| S | −1 , ∀S⊂ Iv , | S |≤ 1
2
| Iv | (5)

where

• δ(i) = {e ∈ Ev : ∃ j ∈ Iv, e = (i, j) or ( j, i)} represents
the set of arcs whose starting or ending node is i.

• Ev(S) = {ei j ∈ Ev : i, j ∈ S} represents the set of arcs
whose nodes is in the subset S of vertices.

• nv = |Iv|

• ce is the associated cost to the undirected edge ei j(e ji).

Constraint (4) states that every node i ∈ Iv must be visited
once, that is, every customer must have two incident edges.
Subtour elimination constraint (5) states that the tour must be
a Hamiltonian path, so it cannot have any subcycle. Then a
feasible solution of the TSP should, by definition, also sat-
isfy constraints (a) and (b) of the CVRP, minimising the total
travel cost of the route.



Algorithm 1 The Proposed LR-based Method
0 Initialization
1 Initialize parameters u0 = 0;δ0 = 2;ρ = 0.95;αL = 1/3
2 Obtain an UB applying Nearest Neighbour Heuristic
3 Initialize L = L(u0)+αL(UB−L(u0))
4 Iteration k
5 Solve the Lagrangean function L(uk)
6 Check the subgradient γk

i = 2−∑e∈δ(i) xe

7 if ‖ γk ‖2= 0 then Optimal solution is found⇒ EXIT
8 if ‖ γk ‖2< ξ then apply a heuristic to improve the UB
9 Check the parameter L

10 Calculate the step-size λk = δk
L−L(uk)
‖γk‖2

11 Update the multiplier uk+1 = uk +λkγk

12 k← k +1

3. METHODOLOGY
The described problem has been tackled using a hybrid ap-

proach. In the proposed methodology, a general VNS frame-
work has been chosen to embed CP and LR paradigms, in
order to improve algorithm’s performance. A complete and
revised description of different VNS algorithms can be found
in [13].

During algorithm’s initialization, CP is used to find an ini-
tial feasible solution in terms of capacity. CP is also used
to check solutions feasibility within diversification and lo-
cal search processes. In turn, a tailored LR method is ap-
plied to calculate routes every time a partial solution is
generated either during initialization, diversification or local
search processes. Applying LR allows avoiding routing post-
optimization methods which use single-route moves. So, the
proposed LR approach provides quick optimal routes and, at
the same time, permits reducing algorithm’s definition and
complexity.

3.1. Proposed Lagrangean Relaxation method
Given the assigned customers to each vehicle, a La-

grangean Relaxation approach is used to solve associated
routing problems. LR is a well-known method to solve large-
scale combinatorial optimization problems. It works by mov-
ing hard-to-satisfy constraints into the objective function as-
sociating a penalty in case they are not satisfied. An excellent
introduction to the whole topic of LR can be found in [12].

LR exploits the structure of the problem, so it reduces con-
siderably problem’s complexity. However, it is often a major
issue to find optimal Lagrangean multipliers. The most com-
monly used algorithm is the Subgradient Optimization (SO).
The main difficulty of this algorithm lays on choosing a cor-
rect step-size λk in order to ensure algorithm’s convergence
[17].

Therefore, the proposed method combines the SO algo-
rithm with a heuristic to obtain a feasible solution from a dual
solution. It can get a better upper bound UB, so it improves
the convergence on the optimal solution departing from an
initial UB obtained with a Nearest Neighbour Heuristic. If
the optimal solution is not reached at a reasonable number of
iterations, the proposed method is able to provide a feasible
solution with a tight gap between the primal and the optimal
cost.

The proposed LR relaxes the constraint set requiring that
all customers must be served (4), since all subcycles can be
avoided constructing the solution x as a 1-tree. Actually, a fea-
sible solution of the TSP is a 1-tree having two incident edges
at each node [15]. The advantage is that finding a minimum
1-tree is relatively easy.

The Lagrangean Dual problem obtained from the TSP for-
mulation, moving into the objective function equalities (4)
weighting them with a multiplier u, is:

max
u∈ℜnv

L(u) (6)

where

L(u) = min
x 1−tree

∑
e∈Ev

cexe + ∑
i∈Iv

ui(2− ∑
e∈δ(i)

xe) (7)

The proposed LR-based method, shown in Algorithm 1,
can be considered a specification of the Lagrangean Meta-
heuristic [8], where a tailored heuristic to get a feasible so-
lution improving the UB is only applied when the 1-tree is
nearly a Hamiltonian path (step 8).

As mentioned, algorithm’s convergence is critically influ-
enced by the step-size λk. As the LB and the UB are normally
unknown or bad estimated, the use of a parameter L, such that
LB ≤ L ≤UB , is proposed. The calculation of the step-size



then turns into λk = δk
L−L(uk)
‖γk‖2 with 0 < δk ≤ 2. Convergence

is so guaranteed if the term L−L(uk) tends to zero. In turn,
convergence efficiency can be improved as long as the new
L parameter gets closer to the (unknown) optimal value. The
main idea is very simple: as the algorithm converges to the
solution, new better LB are known and new better UB esti-
mations can be obtained by using the heuristic designed to
get feasible solutions. Therefore, the parameter L is updated
according to L = L(uk)+ αL(UB−L(uk)) with 0 < αL < 1.
Finally, the parameter δk is initialized to the value 2 and is
updated as [22] suggest.

3.2. Inter-route Moves
VNS metaheuristic is based on exploring alternatively dif-

ferent neighbourhoods around a known feasible solution. In
order to establish these neighbourhoods, different moves are
to be defined.

Since results provided by the LR method are optimal, no
routing post-optimization process is needed. Thus, using LR
for solving routing subproblems allows avoiding the defini-
tion of single-route moves. For this reason, only four different
inter-routes classic moves [21] have been defined to be used
in the VNS metaheuristic:

• Relocate: moves a customer from one route to a different
one.

• Swapping: exchanges two customers belonging to two
different routes.

• Chain: is a specialization of 3-opt that swaps sections of
two contiguous customers from two different routes.

• Ejection chain: swaps the end portions of two different
routes.

3.3. Variable Neighbourhood Search Frame-
work

A general VNS framework, as explained in [13] (Algo-
rithm 2), has been implemented embedding CP and LR meth-
ods. At each iteration, a local minimum is reached departing
from an initial solution. A diversification process (shaking)
ensures that different regions of the search space are explored.
Every time the shaking process generates a new point to di-
versify the search, its feasibility is immediately checked us-
ing CP. If the generated point is unfeasible, the process is re-
peated until a new feasible point is found.

In the proposed implementation, all four mentioned moves
have been selected to be used in shaking (Nk) and local search
(Nl) neighbourhoods. As a first step for the algorithm, an ini-
tial feasible solution is found using CP and LR described
methods. CP is used to assign all customers to available ve-
hicles fulfilling capacity constraints, while resulting routes
are solved to optimality by means of LR. This solution is
improved by means of a Variable Neighbourhood Descent
(VND) method [13] using the four defined moves. Thus, the
VNS starts from a local optimum.

At step 4, a new point is generated at random from the
kth neighbourhood Nk(x) of x in order to diversify the search.
New allocation’s feasibility is immediately checked using CP.
If the generated point is unfeasible, the process is repeated un-
til a new feasible point is found. If the valley surrounding the
solution x is large, a thorough diversification should be done
aiming to avoid getting trapped in a local optimum. For this
reason, the implemented shaking process is repeated several
times. Solutions’ values are ignored until the last iteration,
when routes are calculated using LR to provide a complete
solution.

The local search process for each neighbourhood Nl(x′)
(step 8) performs an exhaustive exploration with a best-accept

Algorithm 2 Algorithm Variable Neighbourhood Search
0 Initialization. Select the set of neighbourhood structures Nk, for k = 1, ...,kmax, that will be used in the shak-

ing phase, and the set of neighbourhood structures Nl for l = 1, ..., lmax that will be used in the local search;
find an initial solution x; choose a stopping condition (usually, time or maximum number of iterations);

1 Repeat the following sequence until the stopping condition is met:
2 Set k← 1;
3 Repeat the following steps until k = kmax:
4 (a) Shaking. Generate a point x′ at random from the kth neighbourhood Nk(x) of x;
5 (b) Local search by VND.
6 (b1) Set l← 1;
7 (b2) Repeat the following steps until l = lmax;
8 - Exploration of neighbourhood. Find the best neighbour x′′ of x′ in Nl(x′);
9 - Move or not. If f (x′′) < f (x′) set x′← x′′ and l← 1; otherwise set l← l +1;

10 (c) Move or not. If this local optimum is better than the incumbent, move there (x← x′′), and
continue the search with N1 (k← 1); otherwise, set k← k +1;



strategy. New solutions’ feasibility is also checked using CP.
Whenever a solution is proved feasible, LR is used to recal-
culate only modified routes. Therefore, this approach permits
to consider only two routes per solution, reducing the compu-
tation time. Finally, the best neighbour x′′ is chosen in terms
of its solution value f (x′′) = ∑v∈V UBv. If its value is lower
than the original f (x′), the solution is updated and neighbour-
hoods’ exploration is restarted (step 9).

When the VND process reaches a local optimum, no solu-
tion improvement may be found according to defined neigh-
bourhoods (step 10). If this local optimum is better than the
incumbent, it is accepted as the current solution x← x′′ and
the search is restarted from the first shaking neighbourhood.
Otherwise, the algorithm keeps x as the best solution found so
far and continues exploring the next neighbourhood. If there
are no remaining neighbourhoods to be explored, the process
is restarted (step 2) until the stopping condition is met (step
1).

4. APPLICATION AND RESULTS
The methodology described in the present paper has been

implemented in Java and linked to the open-source CP soft-
ware system ECLiPSe 6.0 [3]. All tests have been per-
formed on a non-dedicated server with an Intel i5 processor at
2.66GHz and 16GB RAM. In general, five to seven processes
were launched in parallel to solve different problems.

A total of 97 classical CVRP benchmark instances ob-
tained from www.branchandcut.org have been used to test
the efficiency of the proposed approach. Only those instances
whose distance is defined as Euclidean or Geographic have
been selected, in order to ensure triangular inequality’s ful-
filment. Table 1 shows the total number of problems chosen
from each class, as well as how many have been successfully
solved to optimality. This table also shows the average (%
Dev.), maximum (% Max) and minimum (% Min) deviation
from the best published value for those problems that could
not be solved to optimality after 40 iterations. A low devia-
tion is observed for most problem sets, comparable to results
obtained by means of other metaheuristics.

As mentioned, the initial solution is obtained by solving
separately capacity and routing problems. This approach is
able to provide a low-quality quick solution, since both sub-
problems are easily solved but variables are unlinked. How-
ever, this solution may be highly improved applying a VND
method, providing an initial solution whose value is usually
close to the final result. Values and times needed to solve
problems of class A are shown on Table 2, both applying a
VND improving method and using the initial solution pro-
vided by the CP/LR scheme. This table also shows the gap
between best-known and final solutions, as well as the num-
ber of iterations needed to reach the best value (-1 in case
the best-known value is not reached). In many cases, it can

Figure 1. Convergence of LB (dashed line) and UB (solid
line) in three routes of problem M-n200-k16.

be observed that an initial good solution does not lead to a
better final one. Since the shaking process makes the algo-
rithm start from a randomly chosen feasible solution, initial
solution quality does not affect dramatically algorithm’s per-
formance. For this reason, it may be preferable to get a worse
initial solution but with a lower computation time.

Furthermore, the use of LR ensures the partial optimality
of all solutions from the routing perspective. The reason is
that the proposed approach can optimally solve all TSP in-
stances, due to the number of associated customers is always
low. As can be seen in Figure 1, LB and UB converge rapidly,
keeping their gap between 0 and 10−10 and guaranteeing so
solution’s optimality. In addition, LR solves all routes in neg-
ligible times. Thus, LR has demonstrated to be an efficient
alternative for intra-route optimization processes.

The proposed methodology performs similarly both for
small and large instances. Thus, its applicability is not re-
stricted. It is remarkable that the algorithm eventually reaches
the optimal solution for smaller problems (50 customers or
less), but it stops near the optimum for larger instances. Table
3 shows that the presented approach is able to provide state-
of-art results for large problems. As observed, final values are
normally close to best known solutions. It is also remarkable
the result obtained for the largest selected test instance G-
n262-k25, which stays slightly over (0.44%) the best known
value [14].

Finally, two problems deserve special attention: M-n200-
k16 and P-n55-k8. The proposed methodology is able to find



Table 1. Summary of results obtained with the proposed methodology.
Class Problems Opt. No opt. Not solved % Dev. % Max % Min
A 27 14 (51.85%) 13 (48.15%) 0 (0%) 0.65 2.14 0.14
B 23 12 (52.17%) 11 (47.83%) 0 (0%) 1.79 4.28 0.13
E 11 5 (45.45%) 6 (54.55%) 0 (0%) 0.68 1.59 0.41
F 3 1 (33.33%) 2 (66.67%) 0 (0%) 4.22 4.22 4.22
G 1 0 (0%) 1 (100%) 0 (0%) 0.44 0.44 0.44
M 5 1 (20%) 4 (80%) 0 (0%) 2.44 4.35 0.69
P 24 12 (50%) 10 (41.67%) 2 (8.33%) 0.88 3.3 0.15
TSPLib 3 1 (33.33%) 2 (66.67%) 0 (0%) 2.28 3.23 1.33

97 48 (49.48%) 47 (48.45%) 2 (2.06%) 1.67 2.94 0.94

Table 2. Results obtained for class A problems. Results marked with (1) have been obtained applying a VND method to
improve the initial solution, while those marked with (2) correspond to an initial solution obtained by means of the CP/LR
scheme.

Problem BKS Init. Sol. Time (s) Fin. Sol. Total time (s) Gap BKS-FS (%) # iter.
(1) (2) (1) (2) (1) (2) (1) (2) (1) (2) (1) (2)

A-n32-k5 784 989 1243 1.75 0.06 784 784 13.12 24.50 - - 1 2
A-n33-k5 661 734 1185 1.71 0.01 661 661 24.52 16.24 - - 1 1
A-n33-k6 742 792 1289 1.84 0.01 742 742 160.10 161.32 - - 26 26
A-n34-k5 778 816 1259 2.32 0.01 778 778 42.20 14.40 - - 4 1
A-n36-k5 799 832 1207 2.57 0.01 799 799 152.90 186.96 - - 14 20
A-n37-k5 669 697 960 3.26 0.01 669 669 22.90 36.51 - - 1 1
A-n37-k6 949 966 1393 2.85 0.01 949 949 37.73 23.59 - - 4 2
A-n38-k5 730 730 1240 2.89 0.01 730 730 9.09 12.82 - - 1 1
A-n39-k5 822 826 1291 4.00 0.02 825 822 371.51 304.94 0.36 - -1 32
A-n39-k6 831 891 1523 3.37 0.01 833 833 634.35 565.19 0.24 0.24 -1 -1
A-n44-k6 937 991 1547 7.11 0.01 939 937 675.92 298.89 0.21 - -1 14
A-n45-k6 944 1006 1826 6.15 0.02 963 976 367.14 413.02 2.01 3.39 -1 -1
A-n45-k7 1146 1161 1768 11.28 0.02 1146 1146 198.88 147.53 - - 7 3
A-n46-k7 914 986 1711 7.61 0.02 914 914 372.14 93.30 - - 13 1
A-n48-k7 1073 1183 1840 7.85 0.02 1086 1073 1094.28 588.82 1.21 - -1 20
A-n53-k7 1010 1088 1841 15.54 0.03 1010 1017 1208.76 1471.50 - 0.69 33 -1
A-n54-k7 1167 1178 1883 20.17 0.03 1172 1174 1391.63 1517.61 0.43 0.6 -1 -1
A-n55-k9 1073 1084 2074 19.62 0.03 1073 1073 731.67 262.96 - - 20 6
A-n60-k9 1354 1485 2224 22.19 0.04 1354 1364 339.23 2191.01 - 0.74 4 -1
A-n61-k9 1034 1158 2045 22.39 0.03 1037 1036 1321.61 1310.40 0.29 0.19 -1 -1
A-n62-k8 1288 1363 2344 27.13 0.03 1290 1312 2283.54 2611.07 0.16 1.86 -1 -1
A-n63-k10 1314 1402 2275 29.79 0.04 1319 1325 2438.17 2565.06 0.38 0.84 -1 -1
A-n63-k9 1616 1723 2659 23.07 0.03 1630 1616 1972.98 843.10 0.87 - -1 14
A-n64-k9 1401 1483 2211 34.41 0.04 1418 1414 2253.30 2429.19 1.21 0.93 -1 -1
A-n65-k9 1174 1315 2331 26.77 0.04 1178 1182 2203.19 1968.11 0.34 0.68 -1 -1
A-n69-k9 1159 1194 2463 71.32 0.04 1167 1167 3227.33 3320.63 0.69 0.69 -1 -1
A-n80-k10 1763 1963 3165 89.32 0.05 1783 1787 7196.77 7781.76 1.13 1.36 -1 -1

Table 3. Results obtained for some representative large
problems. Improved solutions are marked in bold.

Problem BK Init.Sol. Fin.Sol. Gap BK-FS (%) # iter.
E-n101-k8 817 1628 817 - 18
E-n101-k14 1067 2106 1080 1.22 -1
M-n101-k10 820 1091 840 2.44 -1
M-n121-k7 1034 1227 1079 4.35 -1
M-n151-k12 1015 2481 1022 0.69 -1
M-n200-k16 1371 3287 1335 -2.63 13
M-n200-k17 1275 3201 1304 2.27 -1
G-n262-k25 5685 14563 5710 0.44 -1

a new best solution for the first and an alternative solution for
the latter. For the test instance M-n200-k16, a new best so-
lution with a value of 1335 has been obtained (Figure 2). To
the best of our knowledge, only one previous feasible solu-

tion with a cost of 1371 was known [14]. Taking into account
the best known lower bound for this instance (1256.4) [5],
the solution found reduces the gap between bounds from the
previous value of 8.36% to 5.89%.

The solution found for the test instance P-n55-k8 becomes
an alternative to the known optimum [4]. For this case, a solu-
tion with a value of 576 using only 7 vehicles has been found.
As far as we know, only two previous works have also pre-
sented this alternative value as the best known solution for
this instance [1] [2], while most authors keep the original
value of 588 using 8 vehicles as optimal.

5. CONCLUSIONS
The present paper has presented a methodology combining

CP and LR within a general VNS framework. This scheme



Figure 2. The best knwon solution so far for the test instance
M-n200-k16.

has been used to tackle the CVRP, obtaining state-of-art re-
sults comparable to other metaheuristics. As a hint, it has
provided a new best-known solution for the test instance M-
n200-k16 and an alternative solution for the problem P-n55-
k8, while keeping a competitive performance for most CVRP
instances.

In the proposed approach, the CVRP has been decomposed
into two separated subproblems. The first one is aimed to as-
sign customers to vehicles in terms of capacity, while the sec-
ond is used to optimize corresponding routes. This approach
allows reducing the computation time, since problems to be
solved are far less complex than the original CVRP, although
still NP-hard. In fact, the allocation problem may be assimi-
lated to the Bin Packing Problem, while routing subproblem’s
goal is solving a set of TSP. In both cases, two well-known
paradigms aimed to solve combinatorial problems, CP and
LR, have been applied obtaining good results. Thus, combin-
ing this decomposition with selected techniques provides a
methodology able to get a quick initial solution to the CVRP
problem, even for larger instances. Although solution’s qual-
ity may be low, it may be rapidly improved by applying a
local search process, such as the VND algorithm.

Furthermore, the proposed LR-based method presents an
improved convergence with respect to the SO classical algo-
rithm. It may provide optimal routes when the number of cus-
tomers is relatively small, as it is for all CVRP benchmark
instances. Combining these characteristics with the adopted
approach to the CVRP allows reducing the computation time.
On the one hand, the selected decomposition makes LR only
necessary to recalculate two routes at each iteration. On the
other hand, the LR-based method is faster and simpler than
other routing post-optimization processes, since no intra-
route moves are to be defined and it is less likely to get
trapped in iterative processes.

Finally, several lines for future research are open. First,
different VNS schemes are to be studied, such as Variable
Neighbourhood Decomposition Search, whose shaking pro-
cess can be improved by embedding CP techniques. Second,
heuristic methods are to be included into the neighbourhood
exploration phase. Finally, the presented methodology is to be
adapted to different VRP variants, especially those including
time windows or pick-up and delivery side constraints.
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