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ABSTRACT 

This paper presents a metaheuristic methodology based on the Lagrangean Relaxation technique, 

applied to the Travelling Salesman Problem. The presented approach combines the Subgradient 

Optimization algorithm with a heuristic to obtain a feasible primal solution from a dual solution. 

Moreover, a parameter has been introduced to improve algorithm convergence. The main 

advantage is based on the iterative evolution of both upper and lower bounds to the optimal cost, 

providing a feasible solution in a reasonable number of iterations with a tight gap between the 

primal and the optimal cost. 
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INTRODUCTION 

The Travelling Salesman Problem (TSP) is probably the best known combinatorial problem: “A 

salesman is required to visit once and only once each of n different customers starting from a 

depot, and returning to the same depot. What path minimises the total distance travelled by the 

salesman?” (Bellman, 1962). The TSP belongs to NP-Hard optimization problems class 

(Savelsbergh, 1985). 

Lagrangean Relaxation (LR) is a well-known method to solve large-scale combinatorial 

optimization problems. It works by moving hard-to-satisfy constraints into the objective function 



associating a penalty in case they are not satisfied. An excellent introduction to the whole topic 

of LR can be found in (Fisher, 1981). 

A metaheuristic “refers to a master strategy that guides and modifies other heuristics to 

produce solutions beyond those that are normally generated in a quest for local optimality” 

(Glover and Laguna, 1997). Compared with classical heuristics, Lagrangean metaheuristics 

provides both an upper and a lower bounds (UB and LB), thus a posterior quality check of the 

solution obtained. Furthermore, it reduces search space, as dual information can be used to prune 

decision variables. 

The proposed LR-based method uses the Subgradient optimization algorithm combined with a 

heuristic. Aiming to improve algorithm's convergence on the optimal solution, a heuristic is 

introduced in order to obtain a feasible solution from the dual variable. Indeed, this method tries 

to improve the upper bound with the values of these feasible solutions, so a better convergence is 

obtained. 

The present paper is structured as follows: Next section introduces the notation and presents a 

formulation of the problem. The proposed LR-based method is described afterwards. The 

following section presents some results of tests on common benchmark instances. Finally, some 

conclusions and further research topics are presented. 

 

PROBLEM FORMULATION 

The symmetric TSP can be defined on a complete undirected graph ( , )G I E , connecting the 

customers set {1,2, , }I n   through a set of undirected edges {( , ) | ,E i j i }j I  . The edge 

 in E has associated a travel cost , supposed to be the lowest cost route connecting 

node i to node j. 

( , )e i j ec

Solving the TSP consists on determining a route whose total travel cost is minimised and such 

that each customer is visited exactly once and the route starts and ends at the depot (i=1). 

The classical formulation requires defining the binary variable xe to denote that the edge 

 is used in the route. That is ( , )e i j E  1ex   if customer j is visited immediately after i; 

otherwise . Thus, TSP can be mathematically formulated as follows: 0ex
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where ( ) { : , ( , ) or ( , )}i e E j I e i j j i     

( ) { ( , ) : , }E S e i j E i j S   

 represents the set of arcs whose starting or ending 

node is i; and  represents the set of arcs whose nodes are in the 

subset S of vertices. 

Constraint (2) states that every node i I  must be visited once, that is, every customer must 

have two incident edges. Subtour elimination constraint (3) states that the route must be a 

Hamiltonian cycle, so it can not have any subcycle. 

 

LAGRANGEAN RELAXATION METHOD 

LR exploits the structure of the problem, so it reduces considerably the problem complexity. 

However, it is often a major issue to find optimal Lagrangean multipliers. The most commonly 

used algorithm is the Subgradient optimization (SO). The main difficulty of this algorithm lays 

on choosing a correct step-size 
k  in order to ensure algorithm's convergence (Reinelt, 1994). 

In order to face this limitation, the proposed method combines the SO algorithm with a 

heuristic to obtain a feasible solution from a dual solution. It can get a better upper bound, so it 

improves the convergence on the optimal solution starting at an initial UB obtained with a 

Nearest Neighbour Heuristic. In spite of optimality can not be always reached, the proposed 

method is able to provide a feasible solution with a tight gap between the primal and the optimal 

cost in a reasonable number of iterations. 

 

Lagrangean Dual Problem 

The proposed LR relaxes the constraint set requiring that all customers must be served (2) 

weighting them with a multiplier vector u, since all subcycles can be avoided constructing the 

solution x as a 1-tree. Actually, a feasible solution of the TSP is a 1-tree having two incident 

edges at each node (Held and Karp, 1971). The advantage is that finding a minimum 1-tree is 

relatively easy. 



The Lagrangean Dual problem obtained is  where 

, defining the subgradient 
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Lagrangean Metaheuristic 

The proposed LR-based method can be considered a specification of the Lagrangean 

Metaheuristic presented on Boschetti and Maniezzo (2009). A heuristic obtains a feasible 

solution from the dual variable, so it tries to improve the UB and a better convergence is 

obtained. Eventually, this feasible solution may be provided as the best solution if the method is 

stopped. The stopping criterion is based on the maximum number of iterations ( ) 

and also on a floating-point exception (step-size 

iterationsk max

1510k
 ). The proposed LR-based method 

algorithm is shown in Table 1. 

 

Table 1: The Proposed LR-based Method Algorithm. 

 

The proposed heuristic to improve the UB is applied when the 1-tree is nearly a Hamiltonian 

path. That is, if the subgradient satisfies 2k    (step 8). As any solution is a 1-tree, this 

criterion means that the solution has few vertices without two incident edges. This heuristic 

replaces an edge  where j has some extra edges for an edge ( , )e i j ( , )e i l  where vertex l has 

one single edge minimising the cost of the exchange. In the presented approach, two different 

moves have been defined (Figure 1): (a) unlimited move, and (b) limited move only replaces 



edges which both vertices i and l are connected to same vertex j. First, it iteratively applies the 

unlimited movement but being aware that it could produce an infinite loop. Then, it iteratively 

applies the limited movement until finding a feasible solution. 

 

 

Figura 1: Movements of the heuristic. 

 

A good estimation of the parameter   would avoid increasing the computation time. First, its 

value may be large, for instance the value of the first iteration 1 2  
2k  

, but it should be 

updated whenever a better feasible solution is found according to  . If this parameter is 

not correctly updated, the heuristic becomes time expensive. Eventually, the heuristic could find 

the optimal solution without detecting it, so the method would continue iterating until LB UB . 

As mentioned, algorithm's convergence is critically influenced by the step-size 
k . This value 

relies on either the LB or the UB, which are normally unknown or bad estimated. Therefore, 

convergence may not be assured for all cases. In order to overcome this limitations, the use of a 

parameter L , such that LB L UB  , is proposed. By definition, this parameter corresponds to a 

better estimation of the optimal value L* than those obtained for LB and UB. The calculation of 

the step-size turns into: 
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Convergence is guaranteed if the term ( )kL L u  tends to zero. In turn, convergence 

efficiency can be improved as long as the new L  parameter gets closer to the (unknown) optimal 

solution. The main idea is very simple: as the algorithm converges on the solution, new better 



lower bounds are known and new better upper bounds estimations can be obtained by using the 

heuristic designed to get feasible solutions. Therefore, the parameter L  is updated according to 

the following conditions: 

 It is initialized 0 0( ) ( ( ))LL L u UB L u    with 0 1L   

 If ( )kL u L , it is updated ( ) ( ( ))k k
LL L u UB L u    

 If L UB , then L UB  

 

Finally, the parameter 
k  is initialized to the value 2 and is updated as Zamani and Lau 

(2010) suggest. If the lower bound is not improved, 
k  is decreased, using the formula 

1k k     with 0 1  . On the other hand, if the lower bound is improved, then its value is 

increased according to the formula 
1

3

2k k

 


  providing that 0 2k  . 

 

RESULTS 

The methodology described in the present paper has been implemented in Java. All tests have 

been performed on a non-dedicated server with an Intel Xeon Quad-Core i5 processor at 

2.66GHz and 16GB RAM. In general, different processes were launched to solve different 

problems, while external applications were active at the same time. For this reason, CPU time is 

provided just for giving a rough idea of the algorithm computational performance. 

A total of 59 symmetric TSP instances have been used to test the efficiency of the proposed 

approach. They have been obtained from the library TSPLIB (http://www.iwr.uni-

heidelberg.de/groups/comopt/software/TSPLIB95/ updated 6 August 2008), a reference site with 

a large number of instances for the TSP, and related problems, from various sources and of 

various types. 

The experiments have been conducted using the distance according to the specification 

included in the library, and the number of iterations (300) used by Reinelt (1994) without the 

setting of parameters 0.95   and 1/ 3L  . 

Table 2 presents the number of problems solved ordering by size, as well as the average gap 

of the obtained values UB, LB, and L  from the best known value (BKS). The gap % L  was 



calculated as follows 100
L BKS

BKS

 

 


 . Therefore, if the gap is negative, the L  is smaller than the 

best known solution. Thus, the parameter L  is a good estimation with regard to an unknown 

lower bound or an initial upper bound obtained with a Nearest Neighbour Heuristic. 

 

 

Table 2: Summary of results obtained. 

 

 

Table 3: Results obtained for some representative problems. 

 

Table 3 presents representative results comparing obtained values to best known solution. The 

columns shows: UB best feasible value, % UB  percentage distance from optimality of the UB, 

tUB CPU time in seconds to find the best feasible solution, % LB  percentage distance from 

optimality of the LB, and tFinal final CPU time in seconds. 

 



 

Figure 2: Convergence of LB, L , and UB in problems pr439. 

 

Figure 2 shows the evolution of upper and lower bounds on one run (problem pr439). As can 

be seen, the parameter L  is updated according to the conditions explained. It shows LB, L , and 

UB converge on BKS with theirs respective gaps 1.76 %, 0.36 %, and 4.60 %. The initial UB 

obtained with a Nearest Neighbour heuristic has a gap of 24 % then the gap was much reduced. 

 

CONCLUSIONS AND FUTURE WORK 

The present paper has presented a metaheuristic methodology based on the Lagrangean 

Relaxation technique. This scheme has been used to tackle the Travelling Salesman Problem. 

The proposed LR-based method uses the SO algorithm combined with a heuristic. Aiming to 

improve algorithm's convergence on the optimal solution, the heuristic is introduced in order to 

obtain a feasible solution from the dual variable. On the one hand, the method provides both UB 

and LB, thus a posterior quality check of the solution obtained. On the other hand, it reduces 

search space, as dual information can be used to prune decision variables. Finally, In spite of 

optimality can not be always reached, the proposed method is able to provide a feasible solution 

with a tight gap between the primal and the optimal cost in a reasonable number of iterations. 

It should be remarked that several lines for future research are open. First, the parameters   

and 
L  must be adjusted with fine-tuning processes. Second, since L  is a good estimation, the 

heuristic to obtain a feasible solution from a dual one is to be improved in order to reduce its 

computation time. Finally, the presented algorithm has been included into a Variable 



Neighbourhood Search framework to tackle the Capacitated Vehicle Routing Problem, showing 

very good results both in terms of the quality of the solution and in terms of computational 

efficiency (Guimarans et al 2010). 
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