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ABSTRACT 
This article presents a Lagrangean Relaxation-based 
methodology to solve the Travelling Salesman 
Problem with Time Windows. The Lagrangean 
function exploits the structure of the problem. The 
proposed method, which elaborates on the 
Subgradient Optimization, presents a simple 
heuristics aimed to improve algorithm’s convergence 
on the optimal solution. Furthermore, if the optimal 
solution is not found in a reasonable number of 
iterations, this method is able to provide a feasible 
solution while guaranteeing a tight gap between the 
primal and the optimal cost. 
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1. INTRODUCTION 
The Travelling Salesman Problem (TSP) is the 
following: “A salesman is required to visit once and 
only once each of n different cities starting from a 
base city, and returning to this city. What is the path 
that minimizes the total distance travelled by the 
salesman?” The TSP is probably the most famous and 
extensively studied problem in the field of 
Combinatorial Optimization (Lawer et al. 1985). 

This work considers the Travelling Salesman 
Problem with Time Windows (TSP-TW) which is a 
generalization of the TSP. In the TSP-TW, the service 
at each city must start within an associated time 
window (Desrosiers et al. 1988). 

The TSP belongs to the class of NP-Hard 
optimization problems. Therefore, the TSP-TW with 
general time windows is at least NP-hard too. Indeed, 
it is strongly NP-complete to find a feasible solution 
for the TSP-TW (Savelsbergh 1985). 

Lagrangean relaxation (LR) is a well-known 
method to solve large-scale combinatorial 
optimization problems. It works by moving hard to 
satisfy constraints into the objective function 

associating a penalty on the objective if they are not 
satisfied. For a recent review of LR techniques and 
applications, see Guignard 2003. 

In the proposed approach to the TSP-TW, LR 
relaxes the constraint set requiring that all customers 
must be served and the constraint set requiring that 
the arrival time must be greater than the earliest time. 

The Lagrangean function exploits the structure 
of the problem, so it reduces considerably the 
formulation’s size. Thus, the Lagrangean Problem 
needs less computational effort. However, it is often a 
major issue to find the optimal Lagrangean 
multipliers. The commonly used approach is the 
subgradient method. It guarantees convergence but it 
is too slow to be real practical interest.  

The proposed method improves the convergence 
on the optimal solution in the Subgradient 
Optimization by using an Insertion heuristic to obtain 
a feasible solution from a LR solution. If the optimal 
solution is not found in a reasonable number of 
iterations, it is able to provide a feasible solution 
obtaining a tight gap between the primal and the 
optimal cost. 

The present paper is structured as follows. 
Section 2 introduces some notation and terminology 
and presents a formulation of the problem. Section 3 
describes the proposed Lagrangean relaxation. 
Section 4 describes the proposed method and 
heuristics used to improve its efficiency. Section 5 
presents some results obtained by using the method 
proposed in the previous section. Finally, application 
and further research directions are outlined. 

 
2. MATHEMATICAL FORMULATION 
The TSP can be considered as a routing network, 
represented by a directed graph ),( EIG  , 

connecting city nodes  through a set of 

directed edges
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connected by edges belonging to E that starts and 
ends at a base city and visits all the cities. 

An edge  is associated with a 

matrix denoting the travel time from node i 

to node j. It is assumed that distances defined in the 
problem satisfy the triangular inequality, that means 
the value  is supposed to be the lowest time route 

connecting node i to node j.  
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In the TSP-TW problem, each city  has an 
associated service time  and an associated time 

window , defined by the earliest and the latest 

time to start the service in this city. The base city may 
also have a time window defining the scheduling 
horizon, but not a service time . Moreover 

there is a matrix  denoting the travelling time 

from node i to node j plus the service time  at node 

i, . 
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Then a feasible solution to the TSP-TW should 
satisfy the following constraints: 

 
 Each city should be visited only once. 
 The route must start and finish at the base 

city. 
 Each city is visited within its time window. 

 
The problem goal is to minimize the total time of 

the route. 
The proposed mathematical formulation requires 

defining the binary variable  to denote that the 

edge  is used in the tour 
ex
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It requires to define also another variable  to 

denote the arriving time at node i. These variables are 
nonnegative integers. 

is

The proposed mathematical formulation for the 
TSP-TW problem is as follows: 
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where  
 

 )},(,  represents 

the set of arcs whose starting node is i. 

:{)( jieIjEei 

 )},(,  represents 

the set of arcs whose ending node is i.  
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 M is a large real value, satisfying 
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Constraint (2) guarantees that every city must 

have one starting edge, whereas constraint (3) 
guarantees that every city must have one finishing 
edge. 

If node i is visited immediately before node j, 
then constraint (4) states that the arriving time at node 
j, sj, should be greater than si plus te, the sum of the 
travelling time and the service time at node i, except 
for the base city. 

Constraint (5) states that the total time should be 
lower than the maximum allowed travelling time b1. 

Constraints (6)-(7) impose that each city should 
be visited within the defined time window. 

Note that constraint (4) replaces the subtour 
elimination constraints for the TSP. It was proposed 
by (Miller et al. 1960). 

 
3. LAGRANGEAN RELAXATION 
A feasible solution of a TSP is a 1-tree having two 
edges incident to each node, one starting edge and 
one ending edge. A 1-tree is a tree on the graph 
induced by  nodes plus two edges incident to 
node 1, as explained on (Held and Karp 1970). 
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Note that summing constraints (2) and (3), the 

result is



Ee

e nx . The 1-tree is determined by adding 

to the latter expression the subtour elimination 
constraints. Finding a minimum weight 1-tree is 
relatively easy, so this is potentially an interesting 
relaxation.  

However in the TSP-TW, the 1-tree should 
satisfy time windows constraints. Constraint (6) can 
increase the effort to find a minimum weight 1-tree. 

 The proposed Lagrangean function is as follows: 
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This LR relaxes constraints (2)-(3) weighting 

them with multiplier vectors u and v of appropriate 
dimensions and unrestricted sign. It also relaxes the 
constraint (6) weighting it with a multiplier vector w 
of appropriate dimensions and nonnegative 
components. 

Note that, in this Lagrangean Dual Problem, 
waiting times are allowed. That means one may arrive 
at a city i earlier than  and wait until the node is 

released at time . Thus, waiting time has influence 

on the dual cost of a solution. For this reason, the 
proposed primal formulation considers to minimize 
the total time of the tour. 
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As mentioned, finding a feasible solution for the 
TSP-TW is NP-complete. However, this is a slightly 
relaxed problem and feasible solutions may be 
obtained more easily. 

 
3.1. Strengthened Constraints 
Since constraints (9), (11) and (13) are not very 
strong and they can be lifted in several ways, 
constraints (10) and (12) were added to avoid error 
propagation. Note that, constraints (9), (11) and (13) 
are the same as constraints (4), (5) and (7) 
respectively. 

Also, to avoid the optimization to consider  

bigger than the arrival time associated to , 

Lagrangean function (8) is replaced by:  
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And constraints (15) and (16) are added: 
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3.2. Subgradient Optimization 
Algorithm 1 shows the standard subgradient 
algorithm, as explained on (Wolsey 1998).  

If for any parameter k
k  0 1 , then 

convergence is guaranteed if 0  and   are 

sufficiently large. Otherwise, geometric series  

tend to zero too rapidly and sequences ,  

and {  converge before reaching an optimal point. 
In practice, rather than decreasing 

k0

}{ kv}{ ku

k

}kw

  at each 

iteration, the parameter k  is reduced by   every n 

consecutive iterations without improving the lower 
bound. 

 

Algorithm 1: Subgradient Optimization 
Iteration 0 

Initialize  ;0000  wvu

Iteration k 

Solve the Lagrangean function  ),,( kkk wvuL

Evaluate the subgradient  ),,( kkk wvu
Calculate the step size k  
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k

kkkkkk wvuwvuwvu   

1 kk  
 
4. THE PROPOSED METHOD 
Algorithm 2 shows the proposed method. 

First, the method tries to obtain a feasible 
solution applying the Nearest-Feasible-Neighbour 
Heuristic. As mentioned above, it is important to 
notice that it is an NP-complete problem to find a 
feasible solution to the TSP-TW. Therefore, if the 
heuristic only finds a subpath then it applies the 
Insertion Heuristic. Sorting visits dominates the time 
complexity of these heuristics.  

 
Algorithm 2: The Proposed Method 

Step 0 

Initialize  2;0 0
000  wvu

Apply the NFN Heuristic and the Insertion 
Heuristic. 

Step 1 

Solve the Lagrangean function  ),,( kkk wvuL

Evaluate the subgradient  ),( kk vu
Step 2 

if ( 0),(
2
kk vu ) then 

It finds a tour perhaps it has a waiting time. 
Step 3 

if (  
2

),( kk vu ) then 

Consider the subpath  )1,,,,,1(: 21 kiiiP 

from the dual solution and apply Insertion 
Heuristic 

Step 4 
Calculate the step size  k

},0max{

),(),(),(
1

11

iik
k
i

k
i

kk
k

kkkk

saww

vuvuvu











 

1 kk  
Return to step 1. 

 
In step 2, the method finishes if a tour is found. 

The dual solution may contain a waiting time, but the 
dual cost is the optimal cost. In this case, the solution 
is an equivalent of the optimal solution with some 
swapped nodes but identical cost. The waiting time 
can be eliminated afterwards by applying a Swap 
Heuristic or Two-Node-Exchange Heuristic, as 
explained on (Ascheuer et al. 2001). 



In step 3, if the solution is nearly a tour, the 
method applies the Insertion Heuristic in the 
associated subpath. The parameter   depends on the 
number of variables. In the beginning, it may be large 
equals to . However, it should be tight enough 
to not increase the running time excessively. 
Moreover, the method does not allow applying step 3 
again in next consecutive iterations to not increase the 
running time significantly. 

2/N

As mentioned above, the proposed method uses 
the step size , reducing by k   every n consecutive 

iterations without improving the lower bound. 
It should be remarked that the subgradient 

depends on constraint sets requiring that all customers 
must be served.  
 
4.1. Nearest-Feasible-Neighbour Heuristic 
Starting with each feasible edge , Nearest-
Feasible-Neighbour Heuristic (NFN) enlarges the 
current subpath  by an arc  

resulting in the smallest increase in the objective 
value while guaranteeing feasibility, but the final path 
may not include all . 
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4.2. Insertion Heuristic 
Starting with a shortest path in E obtained by the 
Nearest-Feasible-Neighbour Heuristic, Insertion 
Heuristic enlarges the current partial path 

 by a node j satisfying a certain 

insertion criterion. Let 
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Among all unsequenced cities, it chooses the 
node  that causes the lowest increase in the path 
length. 

Sj

If the current partial path obtained from the dual 
solution has waiting time, the Insertion Heuristic 
enlarges the current partial path  in 

the first  which has  by a node j satisfying a 

certain insertion criterion. Let  be the 

set of unvisited cities and 
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Among all unsequenced cities, it chooses the 
node  that causes the lowest increase in the path 
length. Of course, this reduces the waiting time in 
node i . 

Sj

 
5. RESULTS 
The method has been tested using the problems 
proposed by (Potvin and Bengio 1996) as individual 
route instances on Solomon's RC2 VRPTW (Vehicle 
Routing Problem with Time Windows). Solomon's 

RC2 instances contain a combination of randomly-
spaced and clustered customers. They have large time 
windows and large vehicle capacity but have very 
few routes and significantly more customers per 
route. 

The Lagrangean function (14) has been 
programmed using the software ECLiPSe and 
implemented using eplex library included in this  
package. 
 
5.1. Heuristics Results 
The heuristics were applied in the rc_201.1 individual 
route instance on Solomon's RC2 VRPTW instances. 

In Fig. 1 the resulting path from using the 
Nearest-Feasible-Neighbour Heuristic (NFN) is 
shown. The path that was found is feasible but 
incomplete with }16,3{S .  

In Fig 2. the resulting path using the Insertion 
Heuristic starting from the previous path is shown, 
but in this case the path found is complete but 
unfeasible. 

In Fig. 3 the resulting path from using the 
Insertion Heuristic from the dual solution of 13k  
iteration is shown. 

The results are shown on the table 1. Insertion 
Heuristic has completed the path from NFN Heuristic 
and obtained the optimal known travel time 592, but 
the path found has a waiting time. Also, the path 
found from the dual solution has obtained the optimal 
known travel time but with less travel cost. 

 

Table 1: Heuristics' Results 

Heuristic Travel cost
Travel 
Time 

Waiting 
Time 

NFN 389 569 - 

NFN + 
Insertion 

366 592 36 

Insertion 334 592 68 
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Figure 1: Nearest - Feasible - Neighbour Heuristic 
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Figure 2: NFN Heuristic + Insertion Heuristic 
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Figure 3: Insertion Heuristic 

 
5.2. Method Results 
The proposed method was applied in the individual 
route instances on rc_201 Solomon's RC2 VRPTW 
instance. 

The results are shown on the table 2. Remember 
that the method minimizes the travel time, in that way 
the solutions found has obtained tight values in spite 
of the waiting time. But the travel cost has obtained a 
27% deviation from the best known solution. The best 
known solution of the rc_201 Solomon's RC2 
VRPTW is 1406.94 dist. with 4 vehicles, that was 
solved by Cordeau et. al. 2000.  

 
Table 2: Method Results 

Instances 
Travel 
cost 

Travel 
Time 

Waiting 
Time 

rc_201.1 366 592 36 

rc_201.2 500 860 99 

rc_201.3 521 862 31 

rc_201.4 557 889 82 

Total 1944 3203 248 

 

Aiming to increase the proposed method’s 

efficiency, the parameter 
2
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with 20  k  was introduced and UB denotes a 

known upper bound on the optimal value of the 
original problem. This step size guarantees 
convergence and leads to much faster convergence. 
However, depending on the problem instance, the 
method needs a too tight upper bound to ensure 
algorithm’s convergence. 

 This step size was applied in the rc_201.1 
individual route instance on Solomon's RC2 VRPTW 
instances. In Fig 4. the result using the UB equals to  
592 is shown, in this case the sequences do not 
converge. 
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Figure 4: This step size do not converge 

 
 

6. CONCLUSIONS AND FUTURE 
RESEARCH 

The present paper presents an aproximation to sole 
the Travelling Salesmen Problem with Time 
Windows using Lagrangean Relaxation. Moreover, 
the presented methodology, proposes an insertion 
heuristic to improve LR results. 

The proposed method was found to be able to 
find feasible solutions of the problem allowing 
waiting time. However, the algorithm may not 
guarantee finding the optimal solution. 
 Since the future objective is to solve the 
VRPTW. Firstly, dividing it in instance of TSPTW 
clustering nodes in instances satisfy the constraint of 
vehicle capacity. Secondly, the proposed method will 
solve the instances. The solutions can be allow to 
have waiting times, even thought, it may be not the 
optimal solution. Finally, the instances will be 
rescheduled according to the waiting time and time 
windows. 

Near further research is to be addressed in the 
directions to improve convergence. Also introduce an 
algorithm to solve the Lagrangean function aiming to 
reduce the computational time. 
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