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Abstract 
The notable growth of air transportation in recent years has led to increasingly congested airports 
and airspace. Working at nearly maximum capacity involves risks that normally translate into 
operational disruptions, increasing costs, and lower service quality. Airlines also participate in a 
highly competitive market, where margins are diminished and streamlined operations are key to 
reduce their corresponding costs. In this chapter, we review several studies and applications 
aimed at better managing existing infrastructure and operations. Many of these works are 
focussed on efficiently assigning resources to release unused capacity, reduce costs, and increase 
system’s resilience to unexpected events for sustainable transport infrastructure development. We 
also explore several initiatives proposed to enhance airspace capacity (e.g. SESAR program), 
while reducing at the same time operational and environmental costs. Efficient management, 
together with these initiatives, are key to ensure a sustainable growth of the aviation sector in the 
next few decades. 
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1. Introduction 

 
In 2013, the International Civil Aviation Organisation (ICAO) reported over 3 billion 
passengers worldwide, a number anticipated to surpass 7 billion passengers by 2035 
(IATA, 2017) (see Figure 1). These figures are confirmed by the forecast of main aircraft 
manufacturers, which predict a doubling in aircraft capacity over the next 15 years 
(Airbus, 2017; Boeing, 2017). This increasing pressure in the aviation network poses 
many challenges, as many airports and airspace will be hitting their capacity ceiling in 
the near future.  

 

 
Figure 1: Reported and forecast global passenger traffic (in billion passengers). 

 
 
Hence, the aviation network requires the introduction of operational policies and 
managerial directives to improve efficiency, new technologies that aim at incrementing 
existing capacity, and infrastructure investment in the form of new airports or capacity 
expansion plans in order to cope with air traffic trends. However, an uncontrolled growth 
may generate additional congestion issues (Janić, 2017). Effective Air Traffic 
Management (ATM) is required to avoid airspace congestion and, in particular, in 
Terminal Manoeuvring Areas (TMA) around busy airports. Bad management of these 
airspaces leads into additional noise and green-house gas emissions, already a sensitive 
issue in most countries. Delays derived from congestion may also prevent passengers 
from having access to their flights at the desired time and location, hindering the airports’ 
major function in the network.  
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Air traffic is not divided evenly among all airports, with 50% of the measured traffic 
handled by 3% of the airports, and 90% of traffic handled at 24% of the airports 
(Gelhausen et al., 2013). It seems obvious that using remaining underutilised 
infrastructure would ease pressure off the most congested airports, but the reality is that 
geographical location of served markets, business models in aviation, interests and 
regulations deem this option as unsuitable. Additionally, legacy plays an important role 
that prevents this shift, as it has a major impact on the adaptability of aviation business 
models. 
 
All these aspects require an approach that ensures sustainability of aviation operations in 
order to cope with demand growth. Sustainability is often simplified to just focussing on 
the evaluation of environmental costs, while in fact it has multiple dimensions, of which 
in this chapter we deliberately focus on the following: 
 

• Sustainable growth: as a first step to quantify the required growth, it is important 
to determine current capacity, its limiting factors, and match it to forecast 
demand. A mismatch between demand and supply may easily derive into 
congestion issues (Janić, 2017). Better management of existing capacity can 
extend assets life with limited investment. Capacity studies may aid at directing 
infrastructure investments in the most efficient way. 

• Environmental sustainability: aviation operations are known to have a significant 
impact in terms of green-house gas emissions and noise. Technology advances, 
results from projects such as SESAR (Eurocontrol, 2010a) and NextGEN (FAA, 
2016), and optimisation of current operations may play a big role on reducing 
these emissions; e.g. reduced fuel consumption due to uninterrupted taxis, less 
gate blockages, point-to-point optimised trajectories, reduced TMA holding 
stacks, etc. 

• Socio-political sustainability: aviation and airports in particular are main drivers 
of local and regional economies. This comes at a price: local residents often need 
to deal with high levels of noise, pollution, traffic congestion, etc. Thus, local 
authorities need to balance economic growth with regional developments, 
knowing that expansion of aviation activities has a major impact on urban 
planning, ground transportation and quality of living. Carefully analysing 
expansion projects to be undertaken by means of simulation may help 
determining the most efficient way of managing infrastructure; e.g. London multi-
airport system (Irvine et al., 2015). The weight of legacy is also important, as new 
developments and policies may need to break with well-rooted practices that 
could be hindering efficiency (e.g. noise distribution around Amsterdam Schiphol 
airport or London Heathrow’s alternating runway operations). New initiatives to 
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solve or work around these problems may face a lot of inertia from local 
economy, authorities, and communities. 

• Operational sustainability: aviation operations rarely develop according to plan. 
The same nature of aviation implies the existence of inherent variability and 
uncertainty, mainly due to operational practices, congestion, weather conditions, 
legacy rights, etc. On the one hand, schedules and plans need to be developed in a 
way that allow revenues in a market where margins are generally quite low. On 
the other hand, these plans should also be reliable, that is, able to absorb most 
disturbances without causing a knock-on effect. Robust optimisation, simulation, 
and accurate forecasting should help mitigating disruption effects and reducing 
system’s vulnerability. Nevertheless, regardless of industry’s best efforts to avoid 
disruptions, they are inherent to aviation. Strategies should be developed to help 
operations get back to schedule in the minimum time possible, while mitigating 
adverse effects. That is, designing strategies to make aviation systems as resilient 
as possible. In order to limit the high involved costs (Eurocontrol, 2010b), 
disruption management policies should focus on efficiently using existing and 
available resources rather than introducing new ones (e.g. ferrying an empty 
aircraft), or outsourcing services only when strictly necessary (e.g. rebooking 
passengers with a different airline). 

 

 
Figure 2: Overview of the topics covered in this chapter. 
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In the following sections, we provide an overview on the above-mentioned sustainability 
dimensions for most aviation processes. Figure 2 provides the conceptual schema of the 
topics covered in this chapter. We start in Section 2 with a brief description of airspace 
capacity and main projects aimed at solving and managing congestion. Our review 
mainly adopts an Operational Research (OR) / Management Science (MS) perspective, a 
focus we maintain throughout the chapter. Therefore, we review OR/MS proposals whose 
goal is to maximise efficiency and sustainability of operations given current capacity 
limitations. In Section 3, we study airport capacity and that of its key constraining 
elements, namely the runway(s) system and buffer capacity linked to stands and gates. 
We also discuss technology enablers and the adaptability of airports to ever-changing 
operating requirements. The following section focusses on sustainability of airport 
operations, from aircraft turnaround to terminal processes and resource allocation. This 
review covers technology and policy implementations aimed at mitigating environmental 
effects while guaranteeing the required level of service to the airport customers. Section 5 
presents an overview of mechanisms and procedures airlines may implement to reduce 
their vulnerability to unexpected perturbations in their plans. On the contrary, the 
following section studies strategies for airlines to cope with disruptions once they 
happen, trying to minimise the time required to resume regular operations. Finally, we 
point at some promising areas of current and future research on sustainable aviation 
operations. 
 
 
2. Airspace capacity 

 
The increasing pressure in the air transport network due to traffic growth is aggravating 
congestion problems, especially in European and American airports and airspace. Figure 
3 provides an example of the saturation the European airspace experiences on any given 
day. Airspace capacity is normally defined as the number of aircraft that can fit into Air 
Traffic Control (ATC) sectors in a specific time frame, given separation and safety 
standards (Nosedal et al., 2014). When traffic exceeds the arrival and/or departure 
airports’ capacity, or that of the different air sectors the flight needs to traverse, 
congestion-caused delays start to arise throughout the network. 
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Figure 3: Saturation of European airspace, around the four busiest airports in Europe: 
London Heathrow (LHR), Paris Charles de Gaulle (CDG), Amsterdam Schiphol (AMS), 

and Frankfurt (FRA). (Source: www.flightaware.com) 
 
 
Initiatives like SESAR in Europe (Eurocontrol, 2010a), and NextGEN in the USA (FAA, 
2016), are aimed at enabling a better utilisation of the existing airspace capacity. These 
programs promote the introduction of new technologies and standards to effectively 
increase or better manage current airspace capacity. In Europe, where the problem of 
airspace capacity is more acute, the SESAR program has led to redefining airspace 
regions based on operational requirements, regardless of existing country boundaries 
(Eurocontrol, 2008). These new standards allow managing the airspace as a single 
continuum and the introduction of so-called Business Trajectories (BTs), or “free routes”.  
 
Generally, if an imbalance is predicted between traffic demand and available capacity at 
either airports or the airspace, ATM authorities may issue a regulation to maximise the 
flow in regulated sectors. Alternatively, controllers may issue instructions at the 
operational or tactical level consisting of holding planes in stacks, or applying either 
route diversions or speed variations (Nosedal et al., 2014). The former may be more 
desirable than the latter due to their lower cost in economic and safety terms (Agustín et 
al., 2010). When such delays are imposed on departing flights, they are often known as 
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green delays, due to savings on fuel consumption, gas emissions, and noise reduction 
when compared to airborne delays. However, as most aircraft are used for consecutive 
flights, these delays may still have an impact on the airline’s network, their operations, 
and crew availability.  
 
Given the benefits of transferring airborne delays to the ground, there is a large body of 
research devoted to the subject. Agustín et al. (2010) provide a comprehensive overview 
on the different problem variants and the methodologies used to tackle them. Seminal 
works focussed on solving the ground-holding problem for a single or multiple airports, 
while more recent works have incorporated air sectors flow management. According to 
the authors, this is so because the problem was first studied in USA, where airspace 
congestion is less acute than in Europe. Whichever the case, air traffic saturation may 
pose an important challenge for sustainability of current and forecast operations. Without 
initiatives like SESAR or NextGEN, airspace congestion, and especially airport capacity 
limitations, could be seriously hindering air transport performance in the immediate 
future. 
 
 
3. Airport capacity and constraints 

 
Airport capacity may be broadly defined as the volume of operations an airport can 
handle in a given time frame. Although a conclusive definition of capacity is lacking, it is 
still the main driving concept for airport management at operational, tactical and strategic 
level. 
 
The work of Idris (2001) examined the interaction between key elements of an airport, 
including runways, taxiways, stands, and gates. Focussing on departures at Boston’s 
Logan Airport, the author concluded that runways constitute the main bottleneck in the 
flow of airport operations and their management critically impacts the system’s 
efficiency. The next capacity constraining resource is represented by the airport stands 
(parking positions), as it is normally assumed that an airport will have enough taxiway 
capacity to absorb the runway flow. 
 
This section thus discusses principally runway/taxiway capacity and its impact on airport 
capacity. The section concludes with further thoughts on the role of stand and gate 
capacity and their impact on airport capacity, as well as considerations of long-term 
airport capacity management issues.   
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3.1. Runway / taxiway capacity 

 
Defining capacity of an airport system is a key element for carrying out daily operations. 
It is used for tactical decisions such as the number of slots offered at the airport (i.e. 
available time periods for landing/take-off operations) and controlling daily operations. 
Despite its importance, the definition of a generally accepted procedure to calculate 
capacity seems elusive (Janić, 2017). The International Air Transport Association (IATA) 
proposed several alternative capacity definitions (Pitfield & Jerrard, 1999): 
 

• Declared capacity is the stated limiting capacity of the airport in aircraft 
movements (i.e. either departures or arrivals) per hour. 

• Sustained capacity is the maximum runway throughput that can be achieved over 
a sustained period of time when aircraft operate under instrument flight rules 
(IFR), under a specific traffic mix, in good weather conditions, with good air 
traffic and runway management, but in accordance with safety requirements and 
with an acceptable maximum delay for an agreed limited period of time. 
Acceptable delays are those airlines can accept, due to their compatibility with 
their schedules and aircraft utilisation policies. Tolerance for higher delays may 
increase the airport capacity, but at the cost of increasing congestion and making 
it less attractive for airlines.  

• Unconstrained capacity is the maximum runway throughput which can be 
achieved under ideal conditions, considering only safety requirements. 

 
An airport’s runway capacity or maximum throughput is normally expressed as the 
hourly rate of aircraft operations which may be reasonably accommodated by the runway 
system, be it single or a combination of runways. This capacity is mainly dependent on 
the runway occupancy times and separation standards applied to successive aircraft in the 
traffic mix. Other elements affecting runway capacity include availability of exit 
taxiways, aircraft types operating at the airport, sequencing of aircraft, ATC policies, 
weather conditions, runway configuration and spacing between parallel runways, mode of 
operation (segregated or mixed), etc. The airport capacity is normally tied to runway 
capacity, as this is identified as the main constraint for airport operations (Idris, 2001). 
Although other criteria may also be applied (e.g. terminal capacity for passengers, 
availability of stands, noise restrictions, night curfews, etc.), in practice declared capacity 
is typically set to 85-90% of maximum runway throughput (Zografos et al., 2017), i.e. 
85-90% of sustained runway capacity under given local conditions.  
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Declared capacity and, by extension, runway capacity, play a critical role in the main 
demand management mechanism: slot scheduling. In practice, declared capacity controls 
the number of slots available for allocation per unit of time. A poor allocation scheme 
may lead to congestion problems (Zografos et al., 2017). These translate into additional 
costs due to delays, fuel consumption, and increased noise and emissions. These issues 
may be aggravated as a consequence of the inability of an airport to match requested slots 
with those eventually allocated to airlines, generally due to capacity shortage over certain 
periods. The close interdependency of slot scheduling and declared capacity levels turns 
estimation of airport capacity into a key procedure to ensure sustainability of operations 
for all the involved stakeholders. 
 
Runway capacity may be determined by means of analytical and/or simulation models. 
Analytical models tend to be over-simplified mathematical representations of airport and 
airspace characteristics, and are mainly used for policy analysis, strategy development 
and cost-benefit evaluation (Bazargan et al., 2002). On the other hand, simulation models 
permit obtaining more realistic estimates of capacity and have been widely used to study 
different airports and their corresponding expansion projects (Bazargan et al., 2002; 
Irvine et al., 2015; Pitfield & Jerrard, 1999). 
 
Monte-Carlo (MC) simulation models are among the most popular approaches to study 
the airport environment and determine runway capacity. For example, Pitfield & Jerrard 
(1999) used MC simulation to estimate the unconstrained capacity at the Rome Fiumicino 
International Airport. More recently, Irvine et al. (2015) also used MC simulation to 
evaluate the different alternatives to increase capacity at London’s multi-airport system. 
The authors carried out an extensive study to determine the capacity increase derived 
from: developing a new hub airport in the Thames Estuary; constructing a third runway at 
Heathrow or extending one of its existing runways; expanding Heathrow westwards; 
building a second runway either at Gatwick or Stansted; or, optimising runway utilisation 
at Heathrow by permanently operating in mixed-mode (i.e. permanent arrival/departure 
operation instead of departure-only during certain periods). Interestingly, the authors 
evaluate the proposals beyond the obtained maximum capacity and consider additional 
factors, such as noise increase. Hence, although the new hub airport would be the most 
effective way to increase capacity, the estimated financial and environmental costs 
indicate a poor rate of return. Mixed-mode operations at Heathrow represents the least 
expensive option and yields a small increase of capacity, but imposes an additional noise 
burden on airport residents. In light of these results, the authors conclude that any future 
decision about airport capacity “needs to consider not only the practicalities of airport 
operations and optimal airfield configurations and locations, but also the myriad socio-
economic and environmental implications of any development at both local and global 
scales”. 
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In comparison to MC simulation, discrete-event simulation models try to replicate more 
accurately traffic flows and aircraft movements within the airport. This allows 
representing actual constraints, uncertainties and interactions, although at a higher 
computational and development cost. This kind of techniques have also been used to 
determine capacity and study scheduling policies at different airports (Bazargan et al., 
2002). 
 
Runway capacity and, by extension, airport capacity require efficient management to 
cope with current and forecast demand. Ensuring an effective matching of existing 
capacity to demand is crucial to support medium and long-term growth in a sustainable 
way (Janić, 2017). Short-term approaches to enable a more efficient utilisation of existing 
runway capacity include economic-based (e.g. pricing congestion) and operational 
solutions (e.g. scheduling). Technical, technological and operational innovations (e.g. 
time-based approach) permit increasing runway capacity in the medium-term, while 
infrastructure investment (e.g. building new additional runways) and operational changes 
(e.g. multi-airport systems) represent a long-term approach to capacity increase (Fasone 
& Maggiore, 2014). 
 
Charging (or pricing) congestion at airports usually implies raising the landing fees 
during the congestion period. These fees are applied to those aircraft more likely to 
impose excessive delays and related costs to successive aircraft (Janić, 2017). The main 
goal is to incentivise airlines to reschedule some flights to off-peak periods or, in some 
cases, prevent these flights from accessing the airport. As such, this approach does not 
increase the existing runway capacity, but provides a more efficient utilisation by 
releasing some capacity during peak periods. Mixing this congestion pricing with other 
externalities, such as noise or emissions, has proved relatively effective for capacity 
management and has deserved substantial efforts from the research community (Janić, 
2005; 2017). 
 
An optimal or pseudo-optimal schedule of runway operations may yield an operational 
increase of runway utilisation, as well as savings in fuel costs and a reduction of delays 
(Farhadi et al., 2014). These scheduling problems try to determine effective aircraft 
sequencing over one or multiple runways subject to operational constraints (e.g. adopted 
standard for aircraft separation). Most approaches have their roots on research works on 
machine scheduling, and make use of popular solution techniques such as dynamic 
programming, branch-and-X algorithms, or tailored heuristics and metaheuristics 
(Bennell et al., 2011). Most of these studies tend to focus on a quite limited problem, 
defining sequences for either arrivals or departures in isolation (Farhadi et al., 2014). 
However, they have proved effective when applied or tested at different airports. For 
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example, Farhadi et al. (2014) developed different methods that yielded near-optimal 
schedules for the new Doha (Hamad) International Airport. Malik & Jung (2016) 
developed different methodologies aimed at real-time decision making that were later 
simulated on the east side of Dallas/Fort Worth International Airport. Rodríguez-Díaz et 
al. (2017) tackled the sequencing problem aiming at minimising the deviation from 
scheduled times, rather than maximising throughput or minimising the makespan for all 
scheduled operations. The authors reported their simulated annealing algorithm was able 
to improve by 30% the time delays registered at London Gatwick Airport.  
 
Unfortunately, most approaches found in the literature for aircraft sequencing omit the 
inherent uncertainty present in real operations. Heidt et al. (2016) showed that protection 
against uncertainties during the plan design leads to considerably more reliable plans. 
Two different approaches may be adopted to deal with such uncertainty: stochastic 
optimisation can be used to obtain good average solutions, or robust optimisation can be 
used to compute more reliable schedules that are less sensitive to perturbations. As the 
authors state, such approaches have hardly been considered for solving runway 
scheduling problems. Given the uncertainty naturally involved in aviation, this gap shows 
a clear need for future research efforts devoted to achieve more robust and sustainable 
operations. 
 
Usually, it is assumed there exists enough taxiway capacity to sustain runway operations. 
In particular, it is generally assumed that there are enough high-speed exits to absorb all 
scheduled traffic, without taxiway capacity or configuration imposing any constraint on 
runway operations (Bazargan et al., 2002). Nevertheless, Ravizza et al. (2012) proved 
that good taxiway management can have an influence on airport’s efficiency and that a 
good estimation of taxi times can help mitigate delays and environmental effects of 
ground operations. In this line, several authors have developed models to either forecast 
taxi times, determine optimal taxi routes, or examine the influence of different surface 
management policies. On the one hand, predictive models that allow computing taxi 
times have been developed for specific airports, such as Barcelona-El Prat (Lordan et al., 
2016), Stockholm-Arlanda and Zurich (Ravizza et al., 2012). Most of these studies focus 
on segregating the effects of route-specific decisions (adopted taxi route) from 
interaction-specific (traffic-related) aspects, in order to understand the dynamics of the 
specific airport system. On the other hand, some research has been devoted to solve the 
ground routing problem, consisting in scheduling aircraft movements between the 
runway(s) and the assigned parking stands, while respecting safety constraints (Guépet et 
al., 2016; Ravizza et al., 2014; Yu et al., 2013). Finally, other management initiatives to 
reduce aircraft fuel consumption and taxiway congestion have been studied (see Section 
4.2). As these studies show, more predictable taxi times and reduced ground congestion, 



 12 

combined with efficient runway management, are the key for effective and sustainable 
capacity utilisation. 
 
 
3.2. The role of stands and gates for airport capacity 

 
A great portion of airport capacity is thus provided by an airport’s aircraft processing 
capability for take-off and landing operations, particularly by runway capacity. The next 
level down in the hierarchy of most constraining airport resources (Idris, 2001) is surely 
represented by the number and types of aircraft stands (parking positions) and gates (for 
passenger boarding/disembarking), particularly the former. The number of aircraft stands 
available represents a form of buffering capacity of an airport in terms of aircraft 
processing. Airport capacity can be negatively impacted by stand shortage, especially 
during peak hours.  
 
At the next level of (even more detailed) analysis, the number of gates of course also 
affect the capacity of the airport to process inbound/outbound passenger flows at the 
air/ground boundary. While many stands and related gates will be physically attached to 
the terminal - we speak then of contact stands/gates, remote stand locations are often 
used to enhance the available buffering capacity. They are in principle cheaper to build 
than additional contact stands, which require terminal extensions, and can affect airport 
capacity to some extent. On the other hand, they increase the operational complexity of 
the airfield, which tend to negatively impact passenger experience, with additional 
passenger movements to be realized by coach/bus connecting remote stands to either 
dedicated “remote” gates or one of the existing contact gates, when the latter are 
available for use. 
 
Effective and efficient models and algorithms for the assignment of available stands and 
gates on the day of operation, especially at disrupted times, are crucial in all those 
situations where runway capacity is not saturated and the binding constraints to higher 
airport capacity are posed by a fully utilised apron buffering capacity. We will discuss 
some of these models and algorithms in Section 4.3.  
 
 

3.3. Sustainable airport development in the long-term 

 
When it comes to airport development (master planning), capacity – defined as units of 
service/production in a given time interval, e.g. aircraft movements per day -  is not all 
that is required. Examples from other research areas do exist to shed additional light on 
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this issue. For instance, research on manufacturing systems has long established (Koren 
et al., 1999) that functionality – i.e. “The purpose something is designed or expected to 
serve; the function or functions that something is designed to perform.” (OED, 2017), 
also plays a key role. It does even more in environments where system requirements may 
change unpredictably and unexpectedly over time. Of course, capacity and functionality 
are tightly linked together and technology options available to system designers concur in 
determining long-term system success. 
 
In the realm of airport management, every time a new technology is developed, or a new 
law/regulation enforced, airport infrastructure choices must be made to ensure 
compliance with the novel requirements. More than a decade ago, when A380s started 
operating, airports were not necessarily equipped with the needed infrastructure, e.g. air-
bridges/facilities for passenger boarding, size of contact stands/taxiways/etc. More 
recently, so called Standard 3 technologies have been mandated for automated screening 
of outbound baggage, which require vastly modified baggage flows and come with an 
array of technical specifications that render many existing airport baggage halls 
unsuitable for operation. There is currently a lack of OR/MS methodologies to aid airport 
master planning in such a way that airports are made more easily reconfigurable, in terms 
of time and cost, in the long run, while adapting to many such major changes in 
requirements. Methodologies of decision making / optimisation under uncertainty may 
play an important role in this sense. Existing manuals for airport development/master 
planning (see e.g. IATA, 2014b) fail to provide the needed support, as they: suggest very 
specific recommendations regarding state-of-the-art technologies; limit option choices 
available to decision makers to restricted feasible domains; and do not support the type of 
dynamic, sequential decision making – especially under uncertain evolutions of airport 
requirements, that would be required to tackle such decision support problems. We 
believe all the above provides for the identification of an interesting gap area for aviation 
researchers to tap into and make considerable impact on practitioners in the field.  
 
 
4. Airport operations 

 
Airport operations include: passenger terminal operations, such as check-in services, 
security screening and retail; aircraft ground operations, such as fuelling, catering and 
services for turnaround aircraft; and flight operations, such as aircraft ground movement 
control, take-off and landing. Since most major airports in the world are constrained by 
land size and capacity, with the forecast increase of demand in future aviation, there is a 
growing focus on utilising airport resources by providing efficient operations through 
technologies, streamlined procedures, collaborative decision making, and real-time 
information sharing (Bevilacqua et al, 2015; Salaris and Pascual, 2012). This section 
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reviews some of the main contributions in these respects. The long-term goal of airport 
operations is to be resilient to operational disruptions and be sustainable in providing air 
services to the public. 
 
 
4.1. Aircraft ground operations 

 
Ground operations at the airport are aimed for providing efficient services that facilitate 
aircraft turnarounds whilst maintaining the integrity of flight schedules amid stochastic 
operational disruptions and delays.  
 
A typical operation scenario may unfold as follows. An inbound aircraft arrives late at the 
destination airport. This arrival delay may cause disruption to aircraft turnaround 
operations because ground support personnel and vehicles have been planned according 
to flight timetables without explicitly considering delays. The same support personnel 
and vehicles have also been rostered to service other aircraft at a later stage - hence this 
disruption may cause ripple effects (delay propagation) to other aircraft which require the 
exact same ground resources to turn around. The airport operator then becomes 
concerned about gate allocation and potential gate blockage/conflicts that arise from 
flight and ground operation delays. Meanwhile, ground handling agents are trying to 
maintain the integrity of their ground staff and equipment rosters amid disruptions from 
flight operations, while airlines are busy maintaining the on-time departure and arrival 
performance of follow-up flights for the rest of the day. This scenario demonstrates the 
day-to-day challenges to stakeholders in ground operations on operational efficiency and 
allocation of limited resources. This and the next subsection provide perspectives on 
process efficiency improvement and coordination aspects with respect to aircraft ground 
and flight operations, while efficient allocation of some of the major resources in an 
airport is discussed in the remainder of the section. 
 
Ground operations are procedural according to specific service requirements for turning 
around a particular type of aircraft. Hence, tasks in these service procedures are often 
highly coordinated and optimised by applying e.g. PERT (Project Evaluation and Review 
Techniques) and BPR (Business Process Reengineering) in the industry (Abd Allah 
Makhloof et al, 2014; Bevilacqua et al., 2015; Thorne, 2008; Wu, 2010). Disruptions to 
ground operations come from different sources such as equipment, passenger processing, 
baggage handling, airport congestion, and airline’s own operations (IATA, 2014a). These 
disruptions are almost unpredictable and some are unavoidable, so maintaining the 
efficiency of ground operations has become a major means for airlines to maintain flight 
on-time performance (Arikan et al., 2013; Wu, 2010). 
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Since major airports in the world are limited by land size and hard to expand capacity, 
technology and efficient process design provide a means to increase infrastructure 
capacity. Realising the importance of real-time operations monitoring and data sharing, 
Wu (2008) proposed the Aircraft Turnaround Management System (ATMS) framework 
that aimed for collecting ground operational data on site with mobile devices and share 
this data with stakeholders on real-time basis including ground handling agents, airport 
operators, airport towers and airlines. This concept is in line with the concept of Airport- 
Collaborative Decision Making (A-CDM) proposed by Eurocontrol (2017). Through the 
advance of computing and mobile technologies, applications of similar systems have 
been gradually adopted by airlines, ground handling agents and technology providers in 
the industry (Abd Allah Makhloof et al. ,2014; Avtura, 2017; Rockwell Collins, 2018; 
Salaris and Pascual, 2012). This technology significantly improves ground operations 
efficiency, and meanwhile provides better situational awareness for stakeholders in 
ground operations.  
 
 
4.2. Flight operations 

 
With an emerging goal to make airport operations ‘greener’, the consumption of fuel and 
energy in ground operations at airports has become a research focus more recently. The 
increased time aircraft spend at the gate due to airport ground congestion consumes more 
energy than expected. This congestion also causes aircraft to spend more time taxiing in 
and out between runway ends and airport terminal gates, burning more fuel than normal 
flight operations and aggravating the environmental impact (Simaiakis and Balakrishnan, 
2010). In light of this, various technologies have been proposed to reduce fuel 
consumption during the phase of flight operations on the ground. Honeywell (2017) 
started a joint venture with Safran in 2013 to develop an electric taxiing solution for 
Airbus 320 family by using powers from the APU (auxiliary power unit) aboard an 
aircraft, while Wheeltug is also developing a similar system for airlines (Wheeltug, 
2017). A semi-automatic robotic aircraft towing system (TaxiBot) is being developed by 
an Israeli company, aiming for providing taxi services without using fuel-powered APU 
(TaxiBot International, 2017). Given the advance of robotic technology and scheduling 
methodologies, Sirigu (2017) developed conflict-resolution algorithms which are 
designed to schedule autonomous taxibots for towing aircraft without burning fuel by 
running aircraft engines during the taxi phase of flight operations.  
 
Past efforts in flight operations on the ground focussed more on the taxi phase of 
operations because of delays due to taxiway congestion, taxiing conflicts and long take-
off queues at runway ends. Various optimisation models were developed to improve taxi 
operations and hence reduce the time spent running engines for taxiing. Traditional 
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approaches consider the minimisation of taxi times, although some authors include 
industry-specific key performance indicators, like average delay and on-time 
performance (Guépet et al., 2016). Surprisingly, the authors found that industry 
punctuality indicators are in contradiction with the objective of reducing taxi times, 
therefore requiring more fuel and increasing emissions derived from their operations. 
Other approaches consider ground taxi operations with priorities (Yu et al., 2013) or the 
possibility to hold aircraft at the stands (Ravizza et al., 2014). More recently, research 
efforts have moved towards reducing taxi fuel burn by adjusting speed profiles for 
greener taxiing operations, such as the works by Chen et al. (2016), Zhang et al. (2015), 
and Weiszer et al. (2014). Finally, other management initiatives to reduce aircraft fuel 
consumption and taxiway congestion have been studied, mainly due to fewer 
implementation barriers and investment requirements. For example, Hao et al. (2017) 
analysed the gains obtained by holding aircraft at the gate until taxi can proceed 
uninterrupted to the departure runway. The authors report savings of about 1% in fuel 
consumption and as much as 2% reduction on taxi delay. All these developments help 
improving the efficiency of aircraft flight operations on the ground by reducing taxi 
delays and conflicts, and thus reducing fuel burn and the associated environmental impact 
caused by airport ground operations.  
 
 
4.3. Stand and gate allocation 

 
Amongst practitioners, profoundly different settings may exist with respect to stand and 
gate allocation. For instance, in the USA airlines tend to act as the problem owners, as 
they lease gates from airport operators, while in many airports in Europe and Asia, airport 
operators tend to have more control over resource assignment on the day of operation. In 
some of our projects, we have occasionally seen realities where even ground handlers 
take up control of stand and gate allocation. Zhang and Klabjan (2017) focus on the 
airline-centric system typical of the USA, and explicitly call for future works to provide 
models that are suitable to other perspectives, as this is currently lacking. 
 
Early efforts in the literature mostly focussed on gate allocation to optimise airline 
operations. For instance, gates could be allocated to minimise the walking distance of 
connecting passengers and crew (Ding et al., 2005). From a gate utilisation perspective, 
Cheng et al. (2012) developed metaheuristic algorithms to optimise resource utilisation 
and passenger satisfaction, while Merve and Nilay (2012) and Murat et al. (2012) 
developed a stochastic optimisation approach to solve the same problem. With the shift of 
focus moving towards minimising the impact of stochastic disruptions to airport 
operations, Kim and Feron (2011) used the concept of robust scheduling in terminal gate 
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assignment. Lim and Wang (2005) and Li (2008) considered stochastic flight delays in 
gate assignment by using stochastic programming. 
 
More recently, Castaing et al. (2016) considered the inherent stochasticity of airline flight 
delays and used optimisation models to assign flights to gates in order to minimise the 
chance of gate blockage. Gate blockage occurs when an inbound aircraft arrives at a gate, 
but the gate is still occupied by an outbound aircraft. By considering inherent delays in 
the system, the expected impact of gate blockage could be reduced and this contributes to 
fewer and shorter connection delays to passengers, crew, and less aircraft idle time on 
taxiway (reducing fuel consumption). 
 
 
4.4. Allocation of other ground service equipment and staff 

 
A less considered aspect of resource allocation is ground staff and equipment allocation. 
Marintseva et al. (2015) is a relatively recent example of a work using dual values 
generated by optimisation models to assess the quality of personnel allocation in aircraft 
turnaround processes. 
 
Only a handful of papers exist that look at the allocation of ground service equipment 
(GSE) supporting aircraft turnaround – e.g. passenger stairs, conveyor belts for baggage 
loading/unloading, pushback trucks, etc. Ansola et al. (2011) is an informative account of 
how turnaround operations can be managed more dynamically thanks to the availability 
of GSE location information, which in turn is supposedly provided by radio frequency 
identification (RFID) technologies and is assumed to be known with 100% certainty. 
Kuhn and Loth (2009) look at scheduling of airport service vehicles by integer 
programming. A genetic algorithm-based heuristic is presented to considerably reduce 
the computational time. Again, important stochastic elements of the real-world problem, 
such as GSE location information, are not taken into account. A similar consideration on 
perfect information regarding GSE location over time holds for both Andreatta et al. 
(2014) and Padrón et al. (2016). The former demonstrated a fast heuristic assigning every 
GSE on the airfield one task at a time, whilst targeting to improve robustness of 
turnaround operations - assuming perfect tracking and tracing of GSE all over the apron. 
On similar assumptions, the latter presented more recently a methodological approach for 
GSE scheduling based on combining constraint programming with large neighbourhood 
search and variable neighbourhood descent.  
 
Given the (often high) number of ground handling organisations working concurrently on 
the same apron, and often sharing in practice the same resources including GSE (as 
already discussed in Sections 4.1 and 4.2), decision support methods that enable 
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collaborative decision making would enhance the coordination aspects that would 
otherwise mine the propagation of delays and other issues related to GSE handling and 
sharing. While airport operational databases and other data sources are being pulled 
together following the paradigm of A-CDM, OR/MS-grounded methodologies are not 
widely available to enable the interested parties to exploit the vast amount of available 
information at the best of their capabilities. Examples of works starting to go in such a 
direction are Okwir et al. (2017) and Fitouri-Trabelsi et al. (2013).  
 
 
4.5. Terminal operations 

 
Beyond the aircraft operations value chain analysed so far, two additional value chains 
take place in any airport, whose related activities mostly unfold within the physical 
boundaries of airport terminals – namely the passenger and baggage/cargo value chains. 
Operations such as passenger check-in, security check, passport control and boarding 
highly contribute to the so-called passenger experience, something which each airline 
targets differently from one another but which the airport operator is supposed to be 
ensuring to all passengers irrespectively, through the provision of a “good enough” 
shared infrastructure. Similarly, both inbound and outbound baggage operations 
contribute to the formation and realisation of the intended passenger experience. There 
are obviously some other more fundamental aspects to be considered in both value chains 
such as security, detection of threats, etc., that all go beyond simple passenger experience 
as enacted through efficient terminal operations. 
 
Technologies have been developed in the last few decades to help improve the way 
departing passengers make their way to the aircraft. These technologies have impacted 
and enhanced considerably all the above cited processes – they include e.g. self-service 
kiosks, facilities for automated check-in, common use passenger processing systems 
(CUPPS), biometrics, passenger tracking, video surveillance, risk-based security, access 
control and queue management, etc. Other technologies have enhanced safety levels such 
as the previously mentioned Standard 3 specification for automated baggage screening 
(see Section 3.3).  
 
A good amount of OR/MS literature exists to show airport operators and airlines some of 
the ways they could boost the potential from adoption of novel technologies, as well as to 
help them to simply streamline terminal processes. Reviewing this body of knowledge is 
out of scope for the present chapter. Partial pointers can be provided however to some of 
the relatively recent works addressing the various areas cited so far, though in isolation, 
for instance: van Dijk and van der Sluis (2006), Parlar and Sharafali (2008), Stolletz 
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(2010), and Mújica Mota (2015) for check-in processes; Lee and Jacobson (2011), Seo et 
al. (2012), and De Lange et al. (2013) on passenger security checking. 
 
The main learning one can possibly draw from examining existing literature is that no 
considerable amount of work appears to have been done on planning/execution of 
terminal processes as an end-to-end holistic process for passenger experience delivery. 
Existing excellent OR/MS work targeting only one process area at a time, or two of them 
at maximum, does not enable airport operators to better coordinate the various processes 
over the day of operation – especially considering that some of these processes may be 
sharing at times one or more resources, e.g. human operators. This lack of decision 
support for cross-process coordination is something whose consequences can be 
experienced directly by any passenger during disrupted times. For instance, think of when 
an automated system for security checks halts due to technical faults, and queues form 
backwards inside the terminal, often reaching the already busy check-in concourses and, 
at times, even the airport outdoor spaces. A quick online search would also reveal the 
existence of a few software solution providers (see e.g.  Copenhagen Optimization, 2017) 
who indeed sell decision support modules to optimise passenger terminal operations - but 
again in isolation, thus supporting the hypothesis that neither the world of practitioners 
seems to be equipped for a truly holistic optimisation of the end-to-end airport passenger 
experience.  
 
Finally, as a related discussion, one of the main concerns for airport operators is to define 
what “good enough” an airport infrastructure should be to enable this holistic view of 
process management in airport terminals. Guidance indeed does exist on individual 
terminal processes, typically in the form of Levels of Service (LoS) that processes must 
comply with, as developed and published by sector bodies such as IATA and Airport 
Council International (ACI). Nonetheless, all LoS definitions and figures issued so far 
still focus on individual airport processes instead of end-to-end passenger flows (Correia 
et al., 2008).  
 
 
5. Airline operations 

 
Over the last few years, robust and dynamic OR methodologies have gained popularity 
among companies and researchers for scheduling airline operations. The main benefit of 
applying these techniques lies in having a responsive approach towards possible 
perturbations, as the model itself contemplates these disruptions and constructs a solution 
that allows to absorb them. There are two main areas of robust and dynamic applications 
in the airline industry: aircraft and crew scheduling.  
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The static aircraft routing problem has been widely studied in the literature, but, during 
recent years, the need to improve schedules being able to absorb external events affecting 
their daily routine has raised. One of the early works introducing robustness tackles the 
maintenance aircraft problem, where a set of flights must be allocated under maintenance 
restrictions. Ageeva (2000) presents a model that generates routes where aircraft will 
meet at a given airport two times, so they can be swapped in case of a disruption. Another 
approach is used by Lan (2003), where the author tackles the aircraft maintenance 
problem with passenger disruption, optimising the allocation of slack time between 
flights. To do so, historical data are used to derive the delays of each flight. Simulation 
approaches have been widely used to test if a schedule is robust enough. Rosenberg et al. 
(2002) introduced SimAir, a software specialised in airline simulations. One of its 
applications can be seen in Rosenberg et al. (2004), where they propose isolating hubs so 
a cancellation affects the minimum number of flights. The idea is to use many short 
cancellation cycles to provide a more robust schedule. A cancellation cycle is defined as 
a sequence of legs in a rotation in which the first leg departs from the same airport at 
which the last leg lands. Hence, if the planning incorporates shorter cycles, if a disruption 
took place, it would minimise the effect of cancelling flights. Mixing both optimisation 
and simulation techniques has been widely used, e.g. in Wu (2005) both techniques are 
used to create a schedule that is reliable enough allowing to increase the buffer time 
between flights. In most studies in the literature, optimisation and simulation techniques 
are used sequentially: first, the optimisation procedure is used to find an optimal solution 
and the result is later tested by using simulation. On the contrary, Guimarans et al. (2015) 
used simulation in the acceptance step of the algorithm to check if the solution is robust 
enough for the aircraft recovery problem. By doing so, the algorithm can detect undesired 
solutions earlier. In a recent work, Ahmed et al. (2017a) use a mixed-integer 
programming approach to solve the deterministic approach, and then applying MC 
simulation they create the delays for each aircraft and adapt the buffers so they minimise 
the impact on the schedule. Similarly, Ahmed et al. (2017b) present two mixed-integer 
quadratic programming models that generate a feasible solution whose robustness is 
checked using MC simulation, followed by an evolutionary algorithm that iteratively 
improves the solution given by the previous step.  
 
Crew scheduling is a process that presents serious challenges and has attracted more 
attention from the research community in recent years. Among these challenges, De 
Armas et al. (2017) highlight that optimising the number of crews needed is hardly 
possible due to new regulations forcing airlines to a minimum number of crews. Hence, 
the aim of airlines is to distribute the workload evenly between crew members to ensure 
equity between workers. A higher number of crews with more balanced workloads may 
also increase planning robustness, as more resources and additional flexibility are 
introduced in the system to respond to disrupted scenarios. However, this solution may 
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imply a higher operative cost. Schaefer et al. (2005) were among the first authors tackling 
robustness aspects of crew scheduling. The authors introduced a methodology to find the 
expected cost of scheduling crews under disruptions and find a lower bound to compare 
with the deterministic approach. In their paper, they assume that no flight is cancelled and 
that crews fly the same legs originally assigned to them, but with delayed arrival or 
departure times. Another approach to model robustness in crew scheduling is by 
maximising the number of move-up crews, which are crews that can be potentially 
swapped at a specific airport to provide for more flexibility in response to disruptions. 
This is studied by Shebalov and Klabjan (2006), who introduce an integer problem that is 
solved using Lagrangian relaxation. By comparing the results on scenarios with 
disruptions, they conclude that the total crew cost is reduced using the robust approach. 
Again, robustness techniques can be embedded during the search of a solution. A 
stochastic programming model for solving the crew scheduling problem is presented in 
Yen and Birge (2006). In their work, the authors implement a branching algorithm that 
uses crew plane changes as the branching method. Computational results are presented 
demonstrating the validity of their algorithm. 
 
Muter et al. (2013) present a different application of robustness. In their case, an airline 
seeks to include new flights into an existing schedule by minimising the possible 
implication to the original plan. They formulate the crew pairing problem as a set 
covering formulation solved by column generation. Another widely used method is to 
calculate the worst scenario cost of random simulated scenarios. Lu and Gzara (2015) 
solve the crew pairing problem by generating random flight and connection times 
calculating the cost of the worst-case scenario. They apply Lagrangian relaxation for the 
nonlinear robust terms in the objective function, and the resulting linear problem is 
solved by applying a shortest path algorithm with resource constraints. A series of 
simulation experiments show the validity of their approach.  
 
 
6. Disruption Management 

 
The interest towards how to manage disruptions in the airline industry has been a focus of 
interest both in the research and airline industry. Airline operations constitute one of the 
most complex transportation systems and is commonly introduced as a network. This 
network is composed by the following entities: 
 

• Airports are referred as system nodes, which are linked between them using arcs 
considered to be flights or legs. These airports can be inter-connected either by 
point-to-point (commonly seen in low cost airlines such as Ryanair) or hub-and-



 22 

spoke configurations, where most of an airline’s flights are based at a single main 
airport (Atlanta, London Heathrow, etc..). 

• Aircraft are the main resource of the system, which provide the transportation 
method between nodes.  

• Crew is assigned to a specific flight and aircraft family. The crew scheduling 
process is one of the most complex problems in the system as it tackles a vast 
number of constraints, such as those imposed by safety regulations or restrictive 
union agreements.  

• Passengers define the demand between nodes. In case of disruption, passengers 
need to be re-allocated to new flights minimising the impact on their journey. 

 
Due to its complexity, a disruption in one of the system’s processes might have a massive 
impact on the overall network performance. A disruption is defined as a perturbation 
which interrupts a process, activity or event. In this case, a disruption in one of the 
network’s flights will implicate a cascading effect of delays and cancellations in future 
flights. This is a common case in hub-and-spoke configurations, as flights are highly 
interconnected at the hub airport(s). Hence, disruption management techniques need to be 
applied. Yu and Qi (2004) provide a detailed explanation of disruption management 
based on different applications, including among them flight and crew scheduling. 
 
The first known review tackling irregular operations in the airline industry was 
introduced by Clarke (1998). It provides an extensive study on processes and decision 
frameworks on how airlines deal with such events. A more recent study by Ball et al. 
(2007) updates the work of Clarke (1998), and gives an extensive description of all the 
costs and main features in airline irregular operations. Another overview is given by Kohl 
et al. (2007), where the authors define disruption management not as a single problem, 
but rather as an ongoing process which needs to be monitored. All literature agrees that 
the objectives in disruption management can be hard to adopt and quantify, but a 
common convention is to fulfil passengers’ needs, quantify the cost of the disruption, and 
get back to normal operations. There has been a lot of interest on how to use and quantify 
these objectives. Two main lines of research can be observed: on the one hand, creating a 
more robust schedule for flights, aircraft and crews, which can absorb more perturbations 
or even work with different scenarios; on the other hand, once the disruption has 
occurred, the goal is minimising the time required to get back to normal operations, 
which in turn reduces the total of the disruption.  
 
Due to the high complexity of the system, disruption management was initially divided in 
three different problems, which tackle specific features. Clausen et al. (2010) introduce a 
review of these sub-problems:  
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• The Aircraft Recovery Problem (ARP) aims at reducing the disruption from the 
aircraft perspective, by swapping, delaying, or cancelling flights assigned to the 
aircraft.  

• The Crew Recovery Problem (CRP) re-arranges the crews of each flight after a 
perturbation occurs – typical issues involved are e.g. crews not being able to fly as 
scheduled due to labour-related restrictions.  

• The Passenger Recovery Problem (PRP) looks at minimising the cost of re-
assigning all affected passengers until they reach their destination, and is normally 
formulated in combination with the ARP. 

 
Due to its complexity, recovery of the entire system is generally solved hierarchically, 
with decisions made for one resource defining constraints for subsequent recovery 
problems. The following sections provide a brief overview on developments tackling the 
three recovery sub-problems separately, as well as some attempts to solve different 
combinations in a more integrated way.  
 
 
6.1. Aircraft recovery 
 
The ARP is the most studied of the three sub-problems, possibly because its constraints 
are less complex than e.g. those to be considered in the CRP.  
 
Early research on the ARP is presented by Teodorović and Guberinić (1984), which 
minimises passenger delay by retiming and swapping aircrafts. They use a network flow 
model and branch-and-bound to solve the problem. Teodorović and Stojković (1990) 
proposed an improved approach based on dynamic programming, which allows 
cancellations and minimises the total number of them.  
 
A more complex model is introduced by Løve et al. (2002), which allows swapping 
aircraft from different fleets by using a local search-based heuristic. Another feature of 
the problem is tackled by Yan and Lin (1997), presenting a model to solve the multi-fleet 
ARP with the temporary closure of a specific airport. The model, as in previous works, 
allows swaps, cancellations and delays, but the authors do not consider diverting flights 
to other airports.  
 
More recent works, such as Eggenberg et al. (2010), typically use data from existing 
companies to verify and improve their recovery step.  
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6.2. Crew recovery 
 
The CRP aims at reassigning as quickly as possible all the crew personnel affected by a 
perturbation. This is regarded as possibly the most complex recovery problem, as there 
are many constraints attached to it (e.g. flight hours, resting periods, etc.). If the problem 
is tackled separately, the main assumption is that it is solved after knowing the aircraft 
schedule. Moreover, crew scheduling is generally split into two sub-problems, 
respectively the crew pairing and the crew rostering sub-problems. Crew pairing (i.e. 
combination of tasks within a working period, which may extend over several days) aims 
at optimising the number of crews for a given flight schedule. On the other hand, crew 
rostering assigns pairings to specific crew members. 
 
Wei et al. (1997) were among the pioneers to tackle the CRP with fixed schedules. They 
formulated the problem as a crew pairing problem which minimises the time it takes to 
recover from the disruption. A perturbation is induced in the original schedule and, by 
using their mathematical model, they repair the solution considering the existing pairings. 
On the other hand, Medard and Sawhney (2007) state that the problem needs to be solved 
by creating the pairings and assigning them to a specific crew in a single step. To do so, 
they use a column generation approach improved with a shortest path algorithm.  
 
While most research focusses exclusively on optimising the two problems, they are part 
of the airline complete schedule. Hence, Stojković and Soumis (2001) introduce the 
possibility of delaying flights to reschedule crews, taking advantage that the flights have 
been previously rearranged. The problem is formulated as an integer nonlinear multi-
commodity network flow model. Although disruptions are highly complex to quantify, 
Yu et al. (2003) present the architecture of the solver (CrewSolver) created for 
Continental Airlines to solve the CRP, and state that it saved Continental Airlines 
approximately up to $40 million.  
 
 
6.3. Integration of passenger recovery 
 
Passenger recovery may be the least complex operation in a disrupted scenario, due to 
available options to reallocate passengers in different flights, or even rebook them with a 
different airline. However, it may become a challenging process due to limitation of seats 
if airlines do not agree to cooperate. In the literature, the PRP is commonly studied 
merging it with crew or aircraft recovery.  
 
Bratu and Barnhart (2006) introduce two passenger recovery approaches, which integrate 
crew and aircraft recovery features. In their model, they also allow delaying or cancelling 
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flight departures, assigning reserve crews, and assigning new aircraft to flights. Crew 
recovery is not fully tackled, but instead they model restrictions for the reserve crew. 
Bisaillon et al. (2011) present a more complex algorithm. The authors use their approach 
to solve a combination of fleet assignment, aircraft routing, and passenger reallocation. 
The introduced heuristic alternates between construction, repair, and improvement 
phases, which iteratively destroy and repair parts of the solution.  
 
A common problem faced by companies and researchers is the amount of computational 
time needed to solve such problems. Thus, sometimes it is assumed an airline will use a 
solution if is “good enough”, provided that it requires low computational times. To deal 
with this issue, Jafari and Zegordi (2011) introduce a mathematical model to solve the 
ARP with passenger recovery. They define a recovery scope (i.e. time until all changes 
caused by the disruption have been carried out), introduced by Guo (2005), to solve 
smaller parts of the schedule, allowing them to solve bigger problems. Their model 
permits flight re-timing, aircraft swapping, use of reserve aircraft, cancellations, and 
passenger reassignment. More recently, Sinclair et al. (2016) model the combined aircraft 
and passenger recovery problem as a mixed-integer formulation. Due to its complexity, 
they use a large neighbourhood search introduced by Sinclair et al. (2014) to solve large 
instances of both ARP and PRP, and then use a post-optimisation column generation 
heuristic. Moreover, the model allows to take only into account the passenger recovery 
problem if needed.  
 
Finally, Marla et al. (2017) tackle the ARP and PRP introducing a new mechanism called 
“flight planning”, which allows speed changes during flight. Their problem is based on 
the formulation from Bratu and Barnhart (2006), including the possibility of speed 
change. In this more recent work the focus is on aircraft and passenger disruptions, but 
the same approach can be applied, with little modifications, to look at crews. Using data 
from a European airline, the authors manage to reduce passenger disruptions by 
approximately 66%–83%, incurring in an increase of fuel burn between 0.152% and 
0.155%. The total cost savings for the airline is approximately 5.7%– 5.9%, which is 
better than the approaches typically adopted in practice.  
 
 
7. Conclusions 

 
Aviation is currently facing many challenges to cope with the constant growth of air 
traffic. These challenges are likely to increase in the near future, as demand is forecast to 
grow substantially. Most of these problems stem from operating near current capacity 
ceilings at airports and airspace, an issue generally aggravated by poor capacity 
management practices. In the present chapter, we have reviewed several initiatives aimed 
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at releasing some pressure off the system by means of the introduction of new 
technologies, operating policies, and efficient management of resources. 
 
As observed in our review, many OR works focus on managing air transport operations 
more efficiently. These studies originate from the industry need to reduce costs in an 
extremely competitive market. Reduced margins force companies to seek more efficient 
resource management strategies to sustain their operations and meet market demands. An 
increasing concern for environmental impact in terms of green-house emissions and noise 
pollution is also driving many stakeholders to look for alternatives on how to manage 
assets and better utilise the system’s current capacity. This is so in order to serve global 
and regional economies and local communities, while minimising the adverse effects of 
their operations. 
 
Air transport is inherently uncertain, as many agents need to converge to ensure smooth 
and streamlined operations. Its own nature makes it also more vulnerable to external 
factors, such as weather conditions, that may hinder or even impede performance over 
some time periods. Strict safety regulations, legacy rights, and policies may also limit the 
system’s capacity. All these elements are at the root of deviations from planned 
operations and disruptions in the network. The ability of the different stakeholders to 
overcome these perturbations on their plans is key to ensure the continuity of their 
operations. Although most efforts are currently focussed on designing reliable and robust 
schedules able to absorb certain amount of variability, or developing recovery plans that 
allow returning to normal operations in the minimum possible times, a complete 
understanding of the influence of different factors giving rise to delays and major 
disruptions is still lacking. Due to the network structure, where all agents are very closely 
interconnected, these undesired effects quickly propagate to other parts of the network. A 
better understanding of propagation mechanisms and disruption sources may help 
increasing the predictability of these events, and the development of proactive mitigating 
strategies. Given the frequency and consequences of disruptions in the network, such 
topics constitute a major research avenue for the future with a potential major impact on 
the aviation industry. 
 
In this chapter, we have identified many other lines that are the focus of current and 
future research. Major projects like SESAR and NextGEN grant the development of new 
technologies, standards, and operational procedures to ensure the sustainability of 
aviation operations. The OR literature is also rich on new strategies for reducing or 
managing congestion more efficiently. However, most of these approaches are based on 
deterministic models that ignore or simplify the uncertainty linked to many variables in 
air transport problems. The development of methodologies able to cope with uncertain or 
incomplete information is clearly a must for the industry. Their integration with 
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management systems and protocols like A-CDM opens a whole range of research 
possibilities. Finally, simulation has proved an effective tool for studying aviation 
systems. A closer integration with other OR techniques would bring these methodologies 
one step closer to solving many of aviation’s current challenging problems. 
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