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Abstract The airline industry is one of the most affected by operational disrup-
tions, defined as deviations from originally planned operations. Due to airlines net-
work configuration, delays are rapidly propagated to connecting flights, substantially
increasing unexpected costs for the airlines. The goal in these situations is therefore
to minimise the impact of the disruption, reducing delays and the number of affected
flights, crews and passengers. In this chapter, we describe a methodology that tackles
the Stochastic Aircraft Recovery Problem, which considers the stochastic nature of
air transportation systems. We define an optimisation approach based on the Large
Neighbourhood Search metaheuristic, combined with simulation at different stages
in order to ensure solutions’ robustness. We test our approach on a set of instances
with different characteristics, including some instances originating from real data
provided by a Spanish airline. In all cases, our approach performs better than a
deterministic approach when system’s variability is considered.

1 Introduction

Operational disruptions are alterations of originally planned operations due to exter-
nal events. The airline industry is notably one of the most affected industries regard-
ing operational disruptions. The costs associated to them have gained more and
more importance with the increase of fuel costs and the punctuality policies that
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Fig. 1 Flight legs are, in general, a component of different flight schedules. Hence, a perturbation in
one flight leg may propagate to other elements in the network, affecting aircraft, crew and passenger
connections

airlines have been forced to implement in order to maintain competitiveness [61].
Due to these and other emerging regulations that the aeronautical industry is facing
nowadays [21], the optimisation of resources has become an important issue in the
aeronautical agenda.

Flight plans are usually made several months prior to the actual day of operation.
As a consequence, changes often occur in the period from the development of the
schedule to the day of operation. Those changesmay include unforeseen delays due to
weather phenomena, air traffic control delays, reactionary delays, ground operations,
etc. The fact that a single flight leg is, in general, a component of different flight
schedules implies that a single perturbation may propagate to other elements in the
network (Fig. 1). Thus, a delay usually leads to reactionary delays on several other
flights. This effect is in many cases exacerbated by airlines network characteristics,
which for most of the largest carriers relies on a hub-and-spoke configuration. Hence,
a perturbation on the schedule in the hubmay easily lead tomany parts of the network
being affected by the disruption.

According to the Association of European Airlines [1], 22.4% of departures of
intra-European flights were delayed more than 15min in the first quarter of 2008,
an increase from 20.5% in 2007. This figure is consistent with the observed average
delay (22.74%)during the ten-year period1998–2007.Breakingdown thefigures, the
same study found that 7.3% of delayed departures were due to pre-flight preparation,
i.e. the aircraft is not ready to leave on time because of late loading, crew availability,
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completion of paperwork, etc. Besides, 13.1%of delayswere attributable to air traffic
management (ATM)or airportmanagement-related issues.This figure increased from
11.5% in 2007 to 13.1% in 2008, suggesting that the European airspace is getting
more congested. Considering 27 major European airports, we observe an average
of 23.1% of European departures delayed 15min or more, with an average delay
of 41.8min. Arrival figures are similar, with an average of 25% of flights delayed
15min or more, with an average delay of 41.3min. Among major airports, London
Heathrow is clearly the most affected, with 44.1% of European departures subject
to delays of 15min or more. Other studies [10, 47] suggest that USA figures are
similar.

Estimating the cost airlines incur due to operational disruptions is difficult because
of the many factors involved and some unquantifiable effects, e.g. passenger incon-
venience. Shavell [47] reported that, for the year 1998, the total estimated costs of
irregular operations incurred by the ten USA airlines that report performance data to
the Department of Transportation was $1.826 billion. Analysing this figure, $858M
were attributable to cancelled flights, $909M to delays and $59M to diversions, i.e.
a flight that is directed to a different airport than the originally scheduled. From a
case study of a heavy snowstorm in Boston, Shavell [47] concludes that the esti-
mated cost per minute of delay over 15min is $13.35. In a more recent study [20],
EUROCONTROL’s Central Office for Delay Analysis (CODA) estimates the cost
per minute of delay ate82 for delays in excess of 15min. According to their statistics
and extrapolating the percentage of delayed flights to all flights in Europe, CODA
estimated the total cost of delays from all causes at more than e7 billion in 2008.

One of the major problems airlines face on a daily basis is that specific flight legs
are not entirely predictable. It is normal that flights are subject to a certain level of
variability in daily operations, due to the stochastic nature of air transport and the
number of stakeholders involved. Moreover, due to network configurations, a late
arrival of an aircraft often causes delays in the next departure of this aircraft and
connecting flights. Traditionally, airlines cope with this problem in their schedules
by introducing additional buffer time in between flights, aiming to absorb potential
delays in case theyoccur.However, buffer time increases operations cost significantly.
EUROCONTROL estimates the cost of oneminute of buffer time for anAirbus A320
ate49 per flight [19]. Hence, in the last years, airlines and researchers are addressing
more efforts towards solving operational disruptions more efficiently (see Sect. 2).
Thisway, airlinesmay configure tighter schedules and reduce operational costs,while
still being able to respond to unforeseen events and disruptions. These problemsmake
evident the need of decision support tools that help decision makers to cope with
operative problems under urgent circumstances.

Among the different elements involved in a disrupted scenario (aircraft, crews and
passengers), aircraft have received most attention from the research community (see
Sect. 2), since it is normally considered the scarce resource and problem dimensions
are relatively small. In general, the main objective is to restore the flight schedule as
much as possible using the existing aircraft, i.e. minimise the number of cancellations
and the total delay, in order tominimise the impact of the disruption.Given an original
flight schedule and one or more disruptions (i.e. flight delays), the optimisation
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approach generates a solution by means of delaying flights, swapping aircraft-to-
flight allocation, or even cancelling flights. Such plan considers all flights scheduled
within a certain period of time by a given fleet, including the original departure,
expectedflight durations and connections between airports. This challengingproblem
is known as the Aircraft Recovery Problem (ARP) and regarded to be NP-Hard [9].
Introducing variability in the values associated to the problem, i.e. flights duration,
turnaround times or delays, the Stochastic Aircraft Recovery Problem (SARP) arises.
The SARP accounts for all characteristics inherited from the ARP, adding additional
considerations present in realistic problems.

In this work, we propose an optimisation approach for the SARP that integrates
simulation at different stages. On the one hand, optimisation-based methods have
proved their efficiency to deal with operative problems in complex fields, e.g. logis-
tics or manufacturing problems. However, many optimisation approaches lack the
flexibility needed for tackling real operational problems. In most cases, the stochas-
ticity inherent to these systems is not included in the developedmodels, thus reducing
their applicability to real scenarios. On the other hand, simulation approaches have
great flexibility and allow the modeller to face the problem under a different scope,
including not only stochastic elements but also the dynamics of interest of the sys-
tem. Nevertheless, in most simulation-based approaches the level of optimisation
achieved depends on the number of scenarios evaluated, which in general is just
a small fraction of the whole available configurations. Hence, optimality may not
be guaranteed with the standalone simulation approach, likewise suitability is not
ensured with the standalone optimisation approach. In the present approach, we
combine both methodologies in order to obtain pseudo-optimal solutions which are
robust enough to cope with system’s stochasticity.

We present a methodology based on the Large Neighbourhood Search (LNS)
metaheuristic (see Sect. 4.1). In our approach, we developed a Constraint Program-
ming (CP) formulation to tackle the deterministic ARP (see Sect. 3.2). This model
was combined with simulation and tested in previous works [7, 8]. In this case, we
use the same model as a repair method in the LNS approach. It should be noticed
that we do not consider cancellations in our approach. In these situations, connecting
flights are generally cancelled so the aircraft may be assigned to a later flight from the
same airport. In other cases, aircraft may be ferried, i.e. flying without passengers, to
the destination airport in order to restore the original schedule. In both situations, we
can represent a cancelled flight or aircraft shortage, e.g. due to temporary mechan-
ical problems, as a long delay at flight’s origin. We include simulation at different
stages of the optimisation process, defining the SimLNS methodology (see Sect. 4).
With this approach, we are able to increase solutions’ robustness, as solutions are
only accepted if they perform better than the incumbent in a variety of simulated
scenarios. The proposed methodology has been assessed on a set of instances with
different characteristics, some of them obtained from real data provided by a Spanish
airline (see Sect. 5).
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2 Literature Review

Traditionally, disruption management research is divided into aircraft recovery,
crew recovery and passenger recovery. In this section we review previous acad-
emic research on aircraft recovery. For a more thorough review of academic research
on different aspects of disruption management, including aircraft recovery, we refer
the reader to the comprehensive reviews by Kohl et al. [32], Clausen et al. [15] and
Le et al. [35].

The ARP has received much attention among operational recovery problems as
aircrafts are considered the scarce resource. In addition, rules applied for aircraft
reallocation are often less complex than those governing crew or passenger recovery.
However, in most cases crew recovery permits more flexibility by using standby
crews at airline’s bases. In the case of passenger recovery, it is not uncommon to
reallocate heavily disrupted passengers in flights operated by other airlines. This
solving flexibility is more difficult to achieve in aircraft recovery, since the number
of spare aircraft is normally quite limited or inexistent. Furthermore, research on
aircraft recovery to this date only deals with a single airline and does not support
cooperation between different carriers.

Teodorović and Guberinić [49] are among the pioneers of the ARP. In their work,
given one or more unavailable aircraft, their objective is to minimise the total pas-
senger delay by allowing flight retiming and aircraft swaps. The model is based on
a network flow with side constraints, which is solved using a branch and bound
method [34]. In a later work, Teodorović and Stojković [50] consider aircraft short-
age and propose an improved approach. The authors solve the problem by a heuristic
algorithm based on dynamic programming using an algorithm based on a lexico-
graphic ordering of the flights. The constructed model allows cancellations, retiming
and swaps. The main objective is to minimise the number of cancellations. If there
are several solutions with the same number of cancelled flights, they use the total
passenger delay as secondary objective.

The literature contains several works on different aspects of the ARP. Many of
them are based on a multi-commodity flow problem solved on a time-band network.
Jarrah et al. [29] develop twonetworkflowmodels to copewith aircraft shortage.Both
models—a delay model and a cancellation model—permit using standby aircraft.
In both cases, the goal is to minimise the cost of the recovery, including not only
cancellation anddelay costs, but those associated to swapping or ferrying aircraft. The
main drawback is thatmodels are dissociated: onemodel handles retiming only,while
the other handles cancellations only. Their work was deployed at United Airlines as
part of their decision support system. Cao and Kanafani [13, 14] extended the delay
model of Jarrah et al. [29] to include cancellations and multiple airports. However,
Løve and Sørensen [36] proved that these models have serious deficiencies.

In a later work, Løve et al. [37] presented a heuristic for the ARP based on local
search. The schedule is represented by the lines of work for each available aircraft. In
order to solve the model, consider the cancellations, delays and aircraft reallocation,
both within a single fleet or between fleets. The objective is to minimise the recovery
costs related to delays, cancellations and swaps. It is even possible to assign costs on
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individual flights to weigh the relative importance of different flights. The proposed
approach was tested on the short-haul operation of British Airways (79 aircraft, 44
airports and 339 flights).

Granberg and Värbrand [24] proposed a mixed integer multi-commodity flow
formulation with side constraints for the ARP, although they name the problem
as Flight Perturbation Problem. They further reformulate the problem into a set
packing model using the Dantzig–Wolfe decomposition [16]. Cancellations, delays
and aircraft swaps are allowed in order to solve the perturbation. The authors propose
two-column generation strategies and test them with data from a Swedish domestic
airline. Results show that the methods are capable of obtaining high-quality solution,
but running times increase drastically with instance size, e.g. 1139s for one of the
largest instances containing 215 flights.

Argüello et al. [5, 6] presented a method based on the Greedy Randomised Adap-
tive Search Procedure (GRASP)metaheuristic [42] to reschedule the aircraft routings
if one or more aircrafts are unavailable. The heuristic is capable of cancelling and
retiming flights. As in the approach of Løve et al. [37], it also allows swaps between
different fleet types. The goal is to produce a recovery plan so the original schedule
is restored by the following day. The cost to be minimised includes measures of
passenger inconvenience and lost flight revenue. Their approach was tested in a fleet
of 16 aircraft, 42 flights and 13 airports, reporting results within 10% of optimality,
according to the authors.

Yan and Yang [59] and Yan and Tu [58] developed four models to cope with tem-
porary aircraft shortage. The models were specifically developed for small airlines.
In the first model, it is possible to cancel flights to repair the disrupted schedule. In the
second model, ferrying of spare aircraft is also considered together with flight can-
cellations. The third model considers cancelling and retiming flights. The last model
incorporates all previous possibilities. In all models, swaps are allowedwithin a fleet.
The objective in all models is to minimise the cost of repairing the schedule, includ-
ing passenger revenue. The first two models are built as network flow models and
can be solved to optimality very fast. The other two models contain side constraints
and are solved using Lagrangian Relaxation and subgradient optimisation. In Yan
and Tu [58], a multi-fleet version of these models is presented. In this case, a larger
aircraft can be assigned to a flight that originally was serviced by a smaller aircraft.
Yan and Young [60] also consider multiple aircraft types, but aircraft swaps between
fleets are not allowed. The developed methods were tested on 534 different scenarios
based on China Airlines data, solving all instances to optimality or at most 1% from
optimality within 5.5min. Yan and Lin [57] extend these models to solve the special
situation when an airport is temporarily closed. The model presented allows swap-
ping flights, retimings and cancellations, but not diverting flights. Therefore, flights
arriving to or departing from the closed airport have to be cancelled or delayed.

Thengvall et al. [51] extend the models presented in [58, 59] by penalising devia-
tions from the original schedule in the objective function. They use Linear Program-
ming (LP) relaxation to solve the proposed network flowmodel with side constraints.
In case an integer solution is not reached with this approach, the authors provide a
rounding heuristic that finds feasible solutionswithin a small fraction of the optimum.
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Their approach is tested on data provided by Continental Airlines. In [52], the same
authors extend their study by developing three multi-commodity network models for
determining a recovery schedule following a hub closure.

Eggenberg et al. [17, 18] proposed a column generation scheme for the ARP with
heterogeneous fleet, made of regular and reserve aircraft, and planned maintenance.
The authorsmodel the problemas a commodity flowproblemon a dedicated network,
one for each plane of the fleet. They report results on instances from Thomas Cook
Airlines, ranging from 40 to 760 flights serviced with a fleet of 16 aircraft [18].

Wu and Le [54] also consider maintenance and regulations in their work. They
base their model on flight strings, instead of individual flights, and transform it into
a time-space network. The authors develop a heuristic, called Iterative Tree Growing
with Node Combination, to solve this network model. Results are reported over a set
of instances from China Airlines data consisting of 170 flights, 5 fleets, 35 aircraft
and 51 airports.

Rosenberger et al. [44]were the first to use simulationwhen studying theARP. The
authors propose a problem decomposition, where the master problem is defined as a
set partitioning problem (i.e. each flight is either cancelled or flown by an aircraft),
and each subproblem is a route generation problem. The objective is to minimise the
cost of cancellations and delays. In order to make the approach more computation-
ally efficient, they define a heuristic to select only a subset of aircraft to be included
in the set partitioning problem. The authors assess their results using the simula-
tion environment SimAir [45]. They simulate 500 days of operations for 3 fleets,
with datasets ranging from 32 to 96 aircraft and 139 to 407 flights. Nevertheless,
Rosenberger et al. [44] do not use simulation in the optimisation phase in an inte-
grated manner. Recovery procedures are invoked from SimAir any time a disruption
is preventing the system to execute the flying schedule as planned. The disrupted sce-
nario is then solved deterministically using data provided by the simulator, assessing
the provided solution by resuming simulation with the recovery schedule.

In a more integrated approach, Wu [56] used simulation to calculate random
ground operational delays and airborne delays in an airline network, instead of esti-
mating delay propagation through the system. In a previous work [55], Wu showed
that delays are inherent in airline operations due to stochastic delay causes. In [56], the
author applies simulation to assess the robustness of airline schedules. This approach
resembles the one proposed in our work. In a similar fashion, we use simulation to
account for stochasticity in airborne and ground delays in order to obtain a more
robust recovery plan (see Sect. 4).

3 Problem Formulation

The proposed formulation for the ARP is based on the Constraint Programming
(CP) formalism. CP is a powerful paradigm for representing and solving combi-
natorial problems, whose nature provides easily adaptable problem representations.
Moreover, constraints can be added or modified, even dynamically, without altering
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search procedures. A brief introduction to CP is provided in Sect. 3.1, whereas the
proposed ARP formulation is described in Sect. 3.2.

3.1 Constraint Programming

Constraint Programming (CP) is a powerful paradigm for representing and solving
a wide range of combinatorial problems [46]. In the last few decades, it has attracted
much attention among researchers due to its flexibility and its potential for solving
hard combinatorial problems in areas such as scheduling, planning, timetabling and
routing. CP combines strong theoretical foundations (e.g. techniques originated in
different areas such asMathematics,Artificial Intelligence, andOperationsResearch)
with a wide range of applications in the areas of modelling heterogeneous optimisa-
tion and satisfaction problems.Moreover, CP nature provides other important advan-
tages such as fast programme development, economic programme maintenance and
efficient runtime performance.

Problems are expressed in terms of three entities: variables, their corresponding
domains and constraints relating them. Constraints can be considered as the heart
of CP. They are treated as logical relations among several unknowns (or variables),
each taking a value from a set of accepted values called domain, which can be a
range with lower and upper bounds or a discrete list of numbers. The representation
of the problem, in terms of constraints, results in short and simple programmes easily
adaptable to future changing requirements.

Since CP is the study of computational systems based on constraints, its idea is
to solve problems by stating constraints (requirements) about the problem area and,
consequently, finding a solution satisfying all the constraints. This class of problems
is usually termed Constraint Satisfaction Problems (CSP) and the core mechanism
used in solving them is constraint propagation. Constraint propagation embeds any
reasoning which consists in explicitly forbidding values, or combinations of values,
for some variables of a problem because a given subset of its constraints cannot be
satisfied otherwise [12]. In other words, constraint propagation is a way to produce
the consequences of a decision. In general, when a variable belonging to a constraint
is labelled, that value is propagated to the rest of variables involved in that constraint.

An important contribution of CP is to allow the end user to control the search. The
topic of search comes from the heart of Artificial Intelligence, which has developed
several algorithms to perform the search in a solution space. End user’s search control
is achievedby combininggeneric techniques,when the generationof thewhole search
tree is unfeasible, and problem-specific techniques, when there is an extra knowledge
about special features of the problem. Thus, while mathematical programming is
mainly based in the application of certain algorithms to a model, CP allows the
user to take some decisions on the search stage like the order of instantiation of the
variables and the order of selection of values from domains. This point represents
one of the most important differences with Linear Programming (LP): when using
LP, once the problem is modelled, the rest of the work is done by the solver. In the
CP methodology, the order of variable labelling and value selection is essential to



Large Neighbourhood Search and Simulation for Disruption Management … 177

drive the search. However, it is important to notice that, although a search improved
by these techniques can be useful to find a faster solution for a problem, it can
significantly slow down the solution of a different problem. Depending on these
choices, the way decisions are made is totally different and the performance of the
search algorithm can be highly affected.

Solutions to aCSP can be found by searching (systematically) through the possible
assignments of values to variables, i.e. generating the whole search tree. From the
theoretical point of view, solving a CSP is trivial using systematic exploration of the
solution space. But that is not true from the practical point of view, where efficiency
takes place. Searchmethods can be divided into two broad classes: those that traverse
the space of partial solutions (or partial value assignments), and those which explore
the space of complete value assignments (to all variables) stochastically.

The simplest algorithm that searches the space of complete labellings, is called
Generate-and-Test (GT) [33]. The idea of GT is very simple: firstly, a complete
labelling of variables is randomly generated and, consequently, if this labelling
satisfies all the constraints then the solution is already found; otherwise, another
labelling is tried. Its search space corresponds to the Cartesian product of all vari-
ables’ domains. The GT algorithm is clearly a weak generic algorithm with poor
efficiency for two reasons: it has a non-informed generator and there is a late discov-
ery of inconsistence.

Backtracking (BT) [3] is amethod used for solvingCSPs by incrementally extend-
ing a partial solution that specifies consistent values for some of the variables, towards
a complete solution, by repeatedly choosing a value for another variable consistent
with the values in the current partial solution. BT is a merge of the generating and
testing phases of GT. The variables are labelled sequentially and as soon as all the
variables relevant to a constraint are instantiated, the validity of the constraint is
checked. If a partial solution violates any of the constraints, backtracking is per-
formed to the most recently instantiated variable that still has available alternatives.
Clearly, whenever a partial instantiation violates a constraint, BT is able to eliminate
a subspace from the Cartesian product of all variables’ domains. Hence, BT is strictly
better than GT. However, its running complexity for most non-trivial problems is still
exponential.

BT still has as a major drawback the late detection of conflicts. Consistency
techniques [12] are used to detect inconsistencies in partial solutions sooner in the
search, and they are at the core of constraint propagation. These techniques are based
on the idea of removing inconsistent values from variables’ domains until a solution
is found. It is very important to note that consistency techniques are deterministic.
There exist several consistency techniques, but most of them are not complete [3].
For this reason, these techniques are rarely used alone to solve a CSP completely
and normally are combined with search algorithms such as BT. Attention should be
paid to the use of these consistency techniques. They provide a good mechanism to
remove inconsistent values from variables’ domains during search, but they often
penalise with respect to efficiency terms. For this reason, they are often reduced to
the most basic forms, i.e. node consistency and arc consistency [22].
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To cope with Constraint Optimisation Problems (COP), one should take into
account the cost function. The appropriate modification of the BT search schema is
called Branch and Bound (BB) [34]. During the search, BB maintains the current
best value of the cost function (bound) and, each time a solution with a smaller
cost is found, its value is updated. There are many variations on the BB algorithm.
One consideration is what to do after a solution with a new best cost is found. The
simplest approach is to restart the computation with the bound variable initialised to
this new best cost. A less naive approach is to continue the search for better solutions
without restarting. In this case, the cost function upper bound is constrained to the
bound variable value. Each time a solution with a new best cost is found, this cost is
dynamically imposed through this constraint. The constraint propagation triggered
by this constraint leads to a pruning of the search tree by identifying the nodes under
which no solution with a smaller cost can be present.

Generic techniques for local search, such as Genetic Algorithms (GA) [41], Sim-
ulated Annealing (SA) [38] or Tabu Search (TS) [23], can also be used to aid CP
to find quasi-optimal solutions when it is not feasible to generate the whole search
tree (due to memory or CPU time problems). These methods are used when the size
of the problem is huge and it is not possible to find the optimal solution. Usually,
CP is used to find fast poor solutions which will be used as initial values for these
techniques. A good solution is sought from these input values. If the best solution
found by these techniques is not good enough, a new initial solution is generated
by CP. To avoid the same values than in previous searches, either new constraints
are added or some of the existing constraints are removed. Alternatively, CP may be
embedded at different stages of the local search, either to quickly check feasibility
[28], reduce neighbourhood size by using consistency techniques [27], or to repair
partial solutions in Large Neighbourhood Search approaches (see Sect. 4).

3.2 Aircraft Recovery Problem Formulation

The proposed CP formulation for the ARP intends to enhance the use of constraint
propagation, modelling the problem with two sets of variables: predecessors (P) and
successors (S). These variables allow us modelling the same search space from two
different perspectives, while redundant constraints propagate decisions made in any
of the two sets to the other one. Thus, search is carried out simultaneously in both
variable sets, increasing overall efficiency and speeding up problem solving. This
formulation is inspired on the Vehicle Routing Problem formulation by Kilby and
Shaw [31].

We consider a set of n flights and a fleet of m aircraft. Then, the variables used in
this formulation are:

• Ψ = ψ1...ψn are the flights to be attended;
• A = a1...am are the available aircraft;
• G = g1...gn+2m is the assignment set, with domain G: : [1..m].
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It should be noticed that there is one assignation for each flight and two special
assignations per aircraft: the starting and ending airports for the aircraft. Thus, two
subsets of G, F and L , are defined as the aircraft departure and arrival airports to
ensure the closure of the cycle:

• F = n + 1...n + m is the set of first assignments;
• L = n + m + 1...n + 2m is the set of last assignments.

Then, the predecessor and successor sets are defined as:

• P = p1...pn+m is the predecessors set, with domain P: : [1..n + m]: : (G − L);
• S = s1...sn+m is the successors set, with domain S: : [1..n, n+m + 1..n+ 2m]: :
(G − F).

A set of constraints is imposed to relate all the variables and define the problem.
The predecessor and successor variables form a permutation of G and are therefore
subject to the difference constraints.

pi ̸= p j ∀i, j ∈ G ∧ i < j si ̸= s j ∀i, j ∈ G ∧ i < j (1)

Equations (1) force predecessor and successor sets to contain no repetitions. Thus,
oneflight can have one and only one predecessor and successor. In practice, these con-
straints are implemented using the CP global constraint alldifferent [53] to enhance
constraint propagation efficiency.

The successor variables are kept consistent with the predecessor variables via the
following coherence constraints:

spi = i ∀i ∈ G − F psi = i ∀i ∈ G − L (2)

Equations (2) connect the concepts successor and predecessor as follows: the
former shows that i is the successor of its predecessor, and the latter indicates that i
is the predecessor of its successor.

Along a set of connected flights, all assignations are performed by the same
aircraft. This is maintained by the following leg constraints:

gi = gpi ∀i ∈ G − F gi = gsi ∀i ∈ G − L (3)

Equations (3) are used to ensure that the aircraft assigned to i is the same as that
assigned to its predecessor and successor.

Other sets of variables are defined to ensure the connections between origin and
destination airports, as well as the times that aircraft are assigned to their flights:

• O = o1...on is the origin airport set;
• D = d1...dn is the destination airport set;
• ∆ = δ1...δn is the flight duration list, including minimum turnaround times;
• T = t1...tn is the departing times list, indicating the time when a flight departs;
• τ = τ1...τn is the scheduled times list, indicating the timewhen a flight is originally
scheduled to depart;
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• Γ = γ1...γn is the list containing the initial delays that have disrupted the system;
• Λ = λ1...λn is the delays list, indicating the accumulated delays for each flight.

The actual departure time is calculated given the departure time constraints:

ti ≥ tpi + δpi ∀i ∈ G − F ti ≤ tsi − δi ∀i ∈ G − L (4)

Equations (4) bound the departure time of flight i . This time is, at least, the
departure time plus duration time of its predecessor (δpi ). Equally, this time must be,
at most, the departure time of its successor, minus the duration time of flight i (δi ).

The connection between origin and destination airports is done by using the con-
nectivity constraints:

oi = dpi ∀i ∈ G − F di = osi ∀i ∈ G − L (5)

Equations (5) are used to narrow down the combinations of flights. The origin of
flight i must be the destination of its predecessor. In the same way, the destination
of flight i is the origin of its successor.

Equation (6) ensures that the departing time of flight i is greater than the scheduled
time plus the initial delay.

ti ≥ τi + γi ∀i ∈ G − F − L (6)

Equation (7) allows to calculate the total accumulated delay by obtaining the
difference between the actual time of departure (ti ) and the scheduled time of depar-
ture (τi ).

λi = ti − τi ∀i ∈ G − F − L (7)

Finally, the objective function (8) to be minimised is defined as the sum of accu-
mulated delays for all flights.

min
n∑

i=1

λi (8)

4 SimLNS: Large Neighbourhood Search and Simulation

Aiming to solve the SARP, we propose an optimisation approach based on the Large
Neighbourhood Search metaheuristic, which is described in Sect. 4.1. This local
search method has proven to be specially successful when combined with CP. There-
fore, we integrate our CPmodel for the ARP as part of themethodology, embedded in
the so-called operators (see Sect. 4.2). In order to deal with the stochasticity present
in the problem, we apply simulation to the obtained solutions in different phases of
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our approach (see Sect. 4.3). This way, we improve final solutions’ robustness by
only accepting those solutions which, on average, perform better than previous ones.
Thus, each solution is evaluated in a set of simulated scenarios according to system’s
variability before being accepted or rejected. Rather than just testing the final solu-
tion, as most traditional approaches, we moved the evaluation to previous stages of
the search aiming to detect earlier in the process undesired solutions’ characteristics,
e.g. extremely sensitive solutions due to connection tightness.

4.1 Large Neighbourhood Search

In Large Neighbourhood Search (LNS), proposed by Shaw [48], an initial solution
is gradually improved by alternately destroying and repairing the solution. Over the
years, LNShas proved to be competitivewith other local search techniques, especially
when combined with CP. It complements the CP framework as LNS benefits from
improved propagation while CP benefits from this efficient, while simple, search
framework [39]. A complete introduction to the subject can be found in [40].

The LNS metaheuristic belongs to the class of heuristics known as Very Large
Scale Neighbourhood search (VLSN) algorithms [2]. A neighbourhood search algo-
rithm is considered as belonging to the class of VLSN algorithms if the neighbour-
hood it searches grows exponentially with the instance size or if the neighbourhood
is simply too large to be searched explicitly in practice. Although the concept of
VLSNwas not formalised until recently, algorithms based on similar principles have
been used for decades [2].

All VLSN algorithms are based on the observation that searching a large neigh-
bourhood results in finding local optima of high quality, and hence a VLSN algo-
rithm may return better solutions. However, searching a large neighbourhood is
time-consuming, therefore various filtering techniques are used to limit the search.
In VLSN algorithms, the neighbourhood is typically restricted to a subset of the
solutions that can be searched efficiently.

Intuitively, searching a very large neighbourhood should lead to higher quality
solutions than searching a small neighbourhood. Nevertheless, in practice, small
neighbourhoods can provide similar or superior solution quality if embedded in a
metaheuristic framework, because they typically can be searchedmore quickly. Large
neighbourhoods generally lead to local solutions of better quality, but the search is
more time-consuming. Thus, a natural idea is to gradually extend the size of the
neighbourhood each time the search gets trapped in a local minimum (Fig. 2).

In the LNS metaheuristic, the neighbourhoods are implicitly defined by methods
(often heuristics) which are used to destroy and repair an incumbent solution. A
destroy method destructs part of the current solution while a repair method rebuilds
the destroyed solution. The destroy method typically contains an element of sto-
chasticity such that different parts of the solution are destroyed in every invocation
of the method. The neighbourhood N (x) of a solution x is then defined as the set
of solutions that can be reached by first applying the destroy method and then the
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Fig. 2 Neighbourhood
structure usually explored
with Very Large Scale
Neighbourhood (VLSN)
search algorithms

X

N1
N2

N3

N4

repair method. Since the destroy method can destruct a large part of the solution, the
neighbourhood contains a large amount of solutions, which explains the name of the
heuristic. It should be noticed that the LNS metaheuristic does not search the entire
neighbourhood of a solution, but merely samples it.

The steps of the LNS method are detailed in Algorithm 1 and depicted in Fig.3.
Three variables are maintained by the algorithm: the variable xb is the best solution
observed so far during the search, x is the current solution, and x ′ is a temporary
solution that can be discarded or promoted to the status of current solution. The
function d(·) is the destroy method while r(·) is the repair method. More specifically,
d(x) returns a copy of x that is partially destroyed. Applying r(·) to a partly destroyed
solution repairs it, i.e. it returns a feasible solution built from the destroyed one. Both
destroy and repair methods can be implemented in different ways obeying different
criteria. In step 4 the new solution is evaluated, and then the heuristic determines
whether this solution should become the new current solution or whether it should
be rejected. The accept function can be implemented in different ways. The simplest
choice is to only accept improving solutions, as shown in Fig. 3. In this case, xb

corresponds to the current solution x at any time and steps 4 and 6 in Algorithm 1
are merged. However, some works propose an acceptance criteria borrowed from
SA [43], that is, accepting solutions that may be worse than the incumbent aiming
to diversify the search.

The destroy method is an important part of the LNS heuristic. The most important
choice when implementing the destroy method is the degree of destruction: if only a
small part of the solution is destroyed then the heuristic may have troubles exploring
the search space as the effect of a large neighbourhood is lost. If a very large part
of the solution is destroyed, then the LNS heuristic almost degrades into repeated
re-optimisation or a multi-start process. This can be time-consuming or yield poor
quality solutions dependent on how the partial solution is repaired. Shaw [48] pro-
posed to gradually increase the degree of destruction, while Ropke and Pisinger [43]
choose the degree of destruction randomly at each iteration from a specific range
dependent on the instance size. The destroy method must also be chosen such that
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Algorithm 1: Large Neighbourhood Search (LNS)
1 xb ← find an initial solution x
2 repeat
3 x ′ = r(d(x))
4 if accept (x ′, x) then
5 x ← x ′

6 if f (x ′) < f (xb) then
7 xb ← x ′

8 until stopping condition is met
9 return xb

Fig. 3 Large
Neighbourhood Search
(LNS)

EXIT
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Destroy x: dk(x)
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Y
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Initial solution x

Repair x: rk(x)

Operator Ok

Stop?

the entire search space can be reached, or at least the interesting part of the search
space where the global optimum is expected to be found. Therefore, it cannot focus
on always destroying a particular component of the solution but must be possible to
destroy every part of the solution.

Diversification and intensification for the destroy methods can be accomplished
as follows: to diversify the search, one may randomly select the parts of the solution
that should be destroyed (random destroymethod). To intensify the search, one may
try to remove a number of “critical” variables, i.e. variables having a large cost
or variables spoiling the current structure of the solution (worst destroy or critical



184 D. Guimarans et al.

destroy, respectively). One may also choose a number of related variables that are
easy to interchange while maintaining feasibility of the solution (related destroy
method). Finally, one may use history based destroy, where a number of variables
are chosen according to some historical information.

Choosing the repair method permits much more freedom when implementing a
LNS heuristic. A first decision is whether the repair method should be optimal, in the
sense that the best possible full solution is constructed from the partial solution, or
whether it should be a heuristic, assuming that one is satisfied with a good solution
constructed from the partial solution. An optimal repair operation will be slower than
a heuristic one, but may potentially lead to high-quality solutions in a few iterations.
However, from a diversification point of view, an optimal repair operation may not
be attractive: only improving or identical-cost solutions will be produced. Therefore,
it can be difficult to leave valleys in the search space unless a significant part of the
solution is destroyed at each iteration.

Finally, several destroy and repair methods may be combined to explore multiple
neighbourhoods within the same search. Neighbourhood structures may be nested
or cover different regions of the search space. In general, these neighbourhoods are
explored in a systematic fashion, i.e. switching to the next neighbourhood whenever
the current solution is not improved, or using different strategies to enhance the
search, such as Variable Neighbourhood Search [26]. A more sophisticated LNS
variant is the Adaptive Large Neighbourhood Search (ALNS) heuristic proposed
by Ropke and Pisinger [43]. In this case, each destroy/repair method is assigned a
weight that controls how often the particular method is attempted during the search.
The weights are adjusted dynamically as the search progresses depending on the
performance of each neighbourhood, so that the heuristic adapts to the instance at
hand and to the state of the search.

4.2 LNS Operators for the ARP

In LNS, neighbourhoods are implicitly defined by the destroy and repair operators.
The destroy method typically contains an element of stochasticity such that different
parts of the solution are destroyed in every invocation of the method. Nevertheless,
deterministic destroy methods can also be implemented.

As introduced in Sect. 3.1, CP search methods are mainly based on assigning val-
ues to variables, in such a way that constraints are satisfied and other variables’
domains are reduced to their compatible values through constraint propagation.
Therefore, CP-based destroy and repair methods will unassign and assign values
to variables, respectively, at different stages of the search. It can be inferred then that
a solution is a complete assignment (or complete labelling) to the variables of the
problem, in such a way that all constraints are satisfied at once.

A CP-based destroy method unassigns some values from a solution, destroying
it partially. For the ARP, we have defined two destroy methods, based on the idea of
extending the size of neighbourhoods to be explored. In the 1-airport destroymethod,
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Airport 5 Airport 6 Airport 7

Airport 5 Airport 6 Airport 7 Airport 5 Airport 6 Airport 7

On-time connection Delayed connection Original schedule

Initial Scenario

Destroy Phase Repair Phase

Fig. 4 Destroy/repair phases of the 1-airport operator

all aircraft-to-flight allocations are unassigned for all flights departing an airport
(Fig. 4). As we are using the formulation introduced in Sect. 3.2, where redundant
sets for predecessor and successor variables are used in order to enhance constraint
propagation, aircraft allocations for previous and next flights should also be removed.
Otherwise, the only feasible solution contained in the neighbourhood would be the
preceding solution. The exploration of this neighbourhood permits swapping aircraft
and delaying flights in one airport. We systematically use this operator to explore the
corresponding neighbourhood for every airport present in the instance at hand. We
only switch to the next operator with a higher degree of destruction when all airports
have been explored and no improvement is found.

The second destroy method is based on the same principle of removing aircraft-
to-flight allocations for particular airports. In this case, we unassign all variables
corresponding to flights departing from three consecutive airports (3-airport destroy
method). Therefore, we extend the size of the previously described neighbourhood
by considering allocations of connected flight legs, rather than individual flights. In
this case, the repair phase of the operator hasmore freedom to adjust flight departures
(i.e. delaying flights) and swapping aircraft in particular legs.
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It should be remarked that other destroy methods were considered. In particular,
we explored neighbourhoods where the solution was partially destroyed for two
consecutive airports. However, we found that all improvements obtained bymeans of
this operator were also achieved and often exceeded by the 3-airport destroy method.
All improvements obtained with the 1-airport operator can also be attained with the
3-airport operator, but the time required to explore the latter is higher. Therefore,
we use 1-airport neighbourhoods to lead the algorithm to better solutions quicker.
Starting closer to a local optimum reduces the search space for 3-airport operators,
since previously explored feasible non-improving solutions are discarded. This way,
these neighbourhoods can still be explored efficiently while reducing the required
time. In terms of computational burden, we determined that larger neighbourhoods
increase the required time excessively, due to the exact repair method we use.

We have chosen a CP-based repair method according to the formulation presented
in Sect. 3.2.We use the same repair method for both 1-airport and 3-airport operators.
Concretely, we apply a BB method (see Sect. 3.1) to repair the partially destroyed
solution. Although slower than heuristic methods, we benefit from high-quality solu-
tions, while not being penalised with an excessive computational time by considering
reasonably sized neighbourhoods. During search, the upper bound is set to the total
delay of the best solution found so far. Aircraft-to-flight allocationsmay be forbidden
if they take the lower bound on the total delay over the defined upper bound. We
form the lower bound as the current total delay of the partial solution constructed
during search, i.e. the lower bound is not computed separately by any other method.
This makes the repair method faster, but the search tree is larger than it would be if
we calculate an accurate lower bound. In its simplest form, the BB search explores
the whole tree for the reallocation of all flights to aircraft and rescheduling all flights
within their feasible time ranges in order to minimise the total delay.

4.3 Using Simulation: SimLNS

Large Neighbourhood Search has proved to be an efficient metaheuristic to deal
with complex combinatorial optimisation problems [40]. However, LNS is designed
to provide high-quality solutions under deterministic scenarios. In some real-life
problems, like in the case of the ARP and many air transportation applications,
uncertainty is present. In these cases, a deterministic approach may not be accurate
enough, since it does not reflect the real stochastic nature of the system. Therefore,
it is necessary to extend the deterministic framework to account for the variability of
the system. A natural way is to integrate simulation within the optimisation process
to cope with such stochastic combinatorial optimisation problems, e.g. the SARP.

Traditional simulation approaches allow the user tomodel the stochastic behaviour
of the system, as well as all interactions between different elements. Nevertheless, in
most simulation-based approaches the level of optimisation achieved depends on the
number of evaluated scenarios. In general, this number is a small fraction of available
configurations, not guaranteeing optimality and providing poor feedback regarding
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solution’s quality. On the other hand, deterministic optimisation approaches do not
take into account the uncertainty present in the system. Albeit using simulation to
check the behaviour of different solutions is an extended practice, the decision on
how to use the information provided by simulation is normally left to the final user.
An example of this traditional approach applied to the ARP can be found in [44].

We propose two extensions of the LNS metaheuristic that integrates simulation
at different stages of the search. The proposed approaches are similar to the Iterated
Local Search extensions introduced by Grasas et al. [25]. They all fall within the
SimHeuristics category [30].

In our first approach, which we call SimLoop, we include simulation as the final
step to assess solution’s robustness (Fig. 5). Up to this stage, the algorithm only
accepts solutions that reduce the total delay with respect to the previous solution.
Hence, either the initial solution or a solution with minor total delay is returned
by the LNS framework previous to the simulation stage. However, this solution
may not fulfil other desired characteristics, e.g. number of swaps, or may present
an unacceptable degree of variance. We use simulation to test these attributes and
provide feedback to the optimisation schema, extending the application of traditional
simulation approaches.

Fig. 5 SimLoop: Large
Neighbourhood Search
schema including simulation
as the final step to assess
solution’s feasibility. Final
solution’s robustness is
tested in this final step. In
case the solution does not
meet robustness criteria,
results obtained from this
process are used as feedback
for further iterations of the
local search process

Sim(x)

x  x'

f( x' ) < f( x )

Destroy x: dk(x)

Y

Y

N

N

Initial solution x

Repair x: rk(x)

Operator Ok

Stop?

EXIT

N

Y



188 D. Guimarans et al.

Different criteria can be considered to determine whether a solution is robust
or not. First, a solution may be considered to be robust if the standard deviation
of the simulated solutions is proportional to the variation of the used probabilistic
distributions and its expected propagation due to problems size. Second, a solution
may be considered robust if the gap between the average of the simulated solutions
and the deterministic solution falls within a tolerance interval. Third, we may define
the criterion as the number of solutions whose gap to the deterministic solution is
smaller than a given value. Finally, operational considerations such as the number
of swapped flights/aircraft assignments may be introduced. In the practical case
presented in this work, we use the first criterion to determine the robustness of the
obtained solutions.

The proposed methodology for the SARP, which integrates SimLoop as the opti-
misation method, is structured in the following steps:

1. The stochastic problem is simplified to a deterministic instance by using the
average values of the adjusted probability distributions of the different processes.

2. As the original flight schedule is known, we compute the total delay (the objective
function) associated to this solution. This provides an initial value for the total
delay, which is used as the initial upper bound for the objective function in the
local search process. As the original flight schedule is known to be feasible, we
use it as the initial solution for our method. Intuitively, starting from the original
schedule and applying local changes leads to solutions with a smaller number of
swaps, a desired characteristic for most airlines.

3. A deterministic LNS framework is then used as a local search process to improve
the initial solution, allowing flights to be delayed and enabling swaps. An
improved flight schedule reducing the total delay is found as the result of this
step.

4. The optimised solution is then checked using simulation to verify its robustness:
a set of stochastic instances is generated using the probability distributions for the
processes, namely flight and turnaround times. Maintaining the improved flight
schedule returned by the LNS, we compute the total delay for each instance.
This way, a single solution is evaluated in different scenarios. The results are
analysed in order to determine the level of robustness of the obtained solution. If
the solution is not robust, its objective function value is used as a lower bound
and the optimisation process is repeated, i.e. the LNS is re-launched with a new
lower bound. This way a worst solution may be found but with better robust-
ness characteristics. Otherwise, the solution is accepted and the algorithm ends.
Thus, the methodology returns either the optimal deterministic solution, if it is
robust enough, or a quasi-optimal one whose properties are more suitable for the
stochastic problem at hand.

In our second approach, which we call SimLNS, we integrate simulation at an ear-
lier stage in the process, as depicted in Fig. 6. In this case, simulation is embedded in
the acceptance criterion instead of being used to evaluate the final result. The solution
obtained after applying destroy and repair methods is then tested in a set of scenarios
before deciding whether it is accepted or discarded. Simulation results may be used



Large Neighbourhood Search and Simulation for Disruption Management … 189

Fig. 6 SimLNS: Large
Neighbourhood Search
schema including simulation
as part of the acceptance
criterion. The solution
obtained by operator Ok is
accepted or discarded
according to results obtained
from its simulation
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to evaluate the solution in different ways. The most common approach consists of
accepting solutions which, on average, are better than the incumbent. Hence, we are
only accepting solutions whose average behaviour is better than previous solutions.
A different criterion is borrowed from robust optimisation approaches [11], where
we only accept solutions whose simulated worst case improves previous solution’s
worst case. Thus, we aim at accepting solutions able to perform reasonably well
under challenging conditions.

By moving the simulation step to the acceptance criterion, our goal is to detect
earlier in the process solutions with undesired attributes, e.g. extremely variable solu-
tions due to tight connection times. If a solution has a lower deterministic total delay,
but on average presents a worse behaviour due to solution’s variability, it may be
rejected and the local search process may proceed to evaluate the next neighbour-
hood. Using amore traditional approach or the SimLoopmethod, this solution would
be accepted andwould not be tested until the end of the local search process, therefore
detecting late its unwanted aspects. On the other hand, the approach adopted in the
SimLNS increases substantially the number of solutions to be evaluated. Although
simulating a higher number of scenarios may increase the reliability of the final
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solution, so does the required computational time. Therefore, we need to find a trade-
off between algorithm’s execution time and the number of scenarios per solution to
be tested.

5 Application

We have tested the methodologies described in the previous section on a set of
instanceswith different characteristics. In all cases, tests have been done in a personal
computer with an Intel Core i7 processor at 2.9GHz and 8Gb of RAM, running OS
X 10.9. The different SimLNS variants have been implemented in Java, whereas
the CP model (see Sect. 3.2) has been coded using the ECLiPSe 6.0 platform [4].
Simulation processes have also been implemented in Java.

Since most articles devoted to the ARP deal with specific instances (see Sect. 2),
there are no accepted benchmarks for the ARP. Thus, we had to define a set of
instances to assess our proposed methodologies. We have generated two separate
sets with different attributes.

The first set contains scenarios with dense networks, i.e. networks with a higher
density of flights and a larger connectivity degree for airports. Since we consider a
dense network, the number of feasible swaps at each airport increases and so does the
size of the neighbourhoods to be explored. These instances are purely theoretical and
their goal is to push our methodology in more challenging and difficult scenarios.
Details of the generated theoretical instances are as follow:

• Scenario 50 (denoted 50_): consists of 49 flights, 3 airports, and 8 aircraft. In this
scenario, all the airports have approximately the same number of flights.

• Scenario 100 (denoted 100_): consists of 98 flights, 6 airports, and 16 aircraft.
Again, airports have approximately the same number of flights. In both the sce-
narios 50 and 100, there is no visible hub.

• Scenario 200 (denoted 200_): consists of 196 flights, 11 airports, and 32 aircraft.
In this scenario, airport 1 has nearly twice the number of flights than other airports,
therefore behaving like a hub. It also givesmoreopportunities for swapping aircraft.

• Scenario 300 (denoted 300_): consists of 294 flights, 17 airports, and 48 aircraft.
Again, we use the first airport as a hub to get more swapping opportunities.

The second set contains instances derived from real data provided by a Spanish
airline (due to confidentiality agreements we cannot disclose the name of the airline).
This airline relies on a hub-and-spoke network configuration. This kind of network
provides fewer opportunities to swap aircraft between flights outside hub airports
and generally propagates delays much faster to different parts of the network. We
have generated several disrupted scenarios of different sizes from the original flight
data provided by the airline. To keep consistency among instances, all of them have
similar flights per airport andflights per aircraft ratios. Further details of real scenarios
characteristics are described next:
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• Real scenario 50 (denoted real_50_): consists of 49 flights, 17 airports, and 9
aircraft. In this scenario, Madrid’s airport works as a hub.

• Real scenario 100 (denoted real_100_): consists of 110 flights, 23 airports, and 23
aircraft. Madrid’s airport works as a hub.

• Real scenario 150 (denoted real_150_): consists of 163 flights, 35 airports, and 40
aircraft. This scenario is a whole day of operation for the airline. Again, Madrid’s
airport works as a hub.

In the real scenarios,Madrid’s airport is themain hub. Twomore airports constitute
secondary hubs for the airline: Palma de Mallorca and Barcelona. As it can be seen,
the density of the real scenarios is substantially smaller than the theoretical scenarios,
i.e. for a similar number of flights, the number of airports and aircraft is significantly
higher for real scenarios.

For each described scenario, we generate four instances with different degrees of
disruption. To do so, we introduce delays at selected flights and airports. These delays
range from 30 to 120min, increased in 30-minute intervals. The size of disruptions
is denoted as a suffix in scenario’s name, e.g. 50_30 corresponds to an instance of
scenario 50with 30-minute delays in some flights. In total, we generated 28 instances
corresponding to disrupted scenarios: 16 with a dense network and 12 based on real
data with a hub-and-spoke configuration.

Results for all instances are presented in Table1. It shows the obtained total delay
and computational times for all described methods: (i) deterministic LNS approach
(Det.), simulating the best solution in the final step but not providing feedback to
the optimisation process; (ii) SimLoop approach (SimLoop), using simulation to
get feedback on solution’s robustness; (iii) SimLNS approach (SimLNS), which uses
simulation in the acceptance criterionoptimising the average total delay; (iv) SimLNS
approach optimising the worst solution (SimLNS-W ), instead of the average total
delay. Table1 also contains the total delay of the original flight schedule (Orig.).

The original schedule is used as the initial solution for all approaches. Starting
from the original schedule and performing local moves may lead to solutions with
a minor total delay and few swaps. If a construction heuristic is used to obtain the
initial solution, the algorithm may start at a region of the search space far from the
original schedule. Although the obtained final solution may be better in terms of
total delay, it may imply a large number of swaps regarding the original schedule,
an unacceptable characteristic for most airlines.

In all approaches, we run 20 tests per solution whenever the simulation process is
called. This means that the total number of run simulations may differ depending on
the appliedmethodology. Probability distributions for flight durations and turnaround
times are adjusted to reflect a similar behaviour to reported observations [19]. For
the SimLoop approach, a 5% limit on the standard deviation has been imposed to
consider a solution as robust.

As for operators, instances 100, 200 and 300 are solved using only the 1-airport
operator. Utilising the 3-airport operator for these instances increases the computa-
tional time dramatically. On the other hand, instances 50 and all real scenarios are
solved using both 1- and 3-airport operators.
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Fig. 7 Relative delay reduction with respect to the original schedule for all tested instances using
different methods: Deterministic approach using simulation at the end of the process (a); SimLoop,
using simulation to provide feedback on solution’s robustness (b); SimLNS using simulation inte-
grated in the acceptance criterion (c); SimLNS-W using simulation integrated in the acceptance
criterion, but optimising for the worst obtained solution (d)

In general, we observe that SimLNS performs better than other approaches. For
most instances, the largest reduction on total delay is achieved by means of this
methodology, although computational time is slightly increased due to a higher num-
ber of simulations is required. These results are corroborated in Fig.7. In this figure,
the relative reduction of the total delay regarding the original schedule is presented
for all approaches over all instances. We observe clearly that major reductions are
obtained by means of the SimLNS approach. This means that applying simulation
during the search process may lead to better results than performing it as a final step.

It can be noticed that total delay reductions are lower for instances based on real
data than for those based on a dense network. This can be easily explained by the
network topology of real instances, since hub-and-spoke configurations provide less
opportunities to perform swaps in order to reduce delays. In addition, initial delays
account for a bigger proportion of total delay in instances based on real data. As a
general practice to avoid consequences from unforeseen events, airlines introduce
additional buffer time betweenflights. Sincewe are using real data for these instances,
these oversized buffers are present and can absorb part of the initial delays, reducing
their propagation through the network. We have defined tighter flight connections in
the theoretical instances.

It is important to notice that total delay is not necessarily higher in large instances.
This is due to the fact that for most instances initial delays are introduced in the first
flights departing the hub airport, i.e. all flights up to one hour from the first departing
flight are delayed. Some large scenarios have less flights departing from the hub
during the first hour, therefore having a smaller initial delay.

As for efficiency terms, we observe that instances based on real data require more
time to be solved. The cause may be attributed to two combined facts: we use the
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Table 2 Results for 28 tested instances when only delays greater than 15min are considered
Instance Orig. Det. SimLoop SimLNS SimLNS-W

50_30 182.1 168.6 167.4 167.2 172.9

50_60 672.0 607.7 600.1 589.0 592.2

50_90 1421.7 1303.5 1348.1 1309.6 1323.0

50_120 2442.3 2332.1 2325.2 2275.6 2292.0

100_30 187.8 178.1 179.5 171.9 178.1

100_60 672.2 642.4 649.2 620.0 619.8

100_90 1520.5 1445.6 1454.5 1400.4 1393.0

100_120 2555.4 2453.3 2426.8 2406.2 2427.3

200_30 295.7 248.5 245.9 239.5 248.7

200_90 1664.9 1395.7 1394.9 1392.2 1396.0

200_60 901.7 703.3 701.8 691.2 703.5

200_120 2372.0 1964.9 1946.9 1928.5 1953.0

300_30 282.1 259.9 254.5 246.0 253.3

300_60 879.9 810.4 793.3 774.6 787.7

300_90 1716.3 1523.9 1515.3 1477.2 1531.8

300_120 2510.7 2312.3 2310.5 2277.2 2312.7

real_50_30 120.0 120.0 120.0 120.0 120.0

real_50_60 240.0 240.0 240.0 240.0 240.0

real_50_90 384.6 385.4 384.4 383.1 383.8

real_50_120 534.9 536.2 534.9 533.2 533.0

real_100_30 450.0 450.0 450.0 450.0 450.0

real_100_60 900.0 900.0 900.0 900.0 900.0

real_100_90 1471.0 1459.9 1463.1 1461.4 1462.3

real_100_120 2319.3 2290.4 2287.5 2281.6 2283.9

real_150_30 90.8 90.0 92.9 90.0 90.0

real_150_60 186.1 182.2 184.0 181.0 180.9

real_150_90 317.0 301.9 296.8 296.6 296.2

real_150_120 504.0 417.5 421.6 418.2 417.5

Total delay (in minutes) is reported for the original schedule and solutions obtained by means of
the different described methodologies

two defined airport-based operators and there is major number of airports present in
these instances.

Although we account for total delay, airlines only consider delays larger than
15min. Table2 shows our results under this consideration. Equally, Fig.8 presents
a graphical interpretation on the relative reduction of delays in excess of 15min.
As expected from previous results, embedding simulation in the search yields better
results than using simulation at the end of the process. This is clearly appreciated
in Fig. 8, where we observe that SimLNS provides approximately a 10% average
delay reduction and over 20% for some instances. We also see in this figure how
both SimLNS methods outperform more traditional approaches.
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Fig. 8 Relative delay reduction for delays greater than 15min with respect to the original schedule
for all tested instances using different methods: Deterministic approach using simulation at the end
of the process (a); SimLoop, using simulation to provide feedback on solution’s robustness (b);
SimLNS using simulation integrated in the acceptance criterion (c); SimLNS-W using simulation
integrated in the acceptance criterion, but optimising for the worst obtained solution (d)

Table 3 Estimated cost of disruptions (in euros) for instances generated from real data
Instance Orig. Det. SimLoop SimLNS SimLNS-W

real_50_30 9,840.00 9,840.00 9,840.00 9,840.00 9,840.00

real_50_60 19,680.00 19,680.00 19,680.00 19,680.00 19,680.00

real_50_90 31,533.10 31,598.70 31,520.80 31,414.20 31,471.60

real_50_120 43,861.80 43,964.30 43,861.80 43,718.30 43,706.00

real_100_30 36,900.00 36,900.00 36,900.00 36,900.00 36,900.00

real_100_60 73,800.00 73,800.00 73,800.00 73,800.00 73,800.00

real_100_90 120,617.90 119,707.70 119,970.10 119,830.70 119,904.50

real_100_120 190,178.50 187,812.80 187,570.90 187,087.10 187,279.80

real_150_30 7,445.60 7,380.00 7,617.80 7,380.00 7,380.00

real_150_60 15,256.10 14,936.30 15,088.00 14,837.90 14,829.70

real_150_90 25,994.00 24,755.80 24,333.50 24,321.20 24,284.30

real_150_120 41,328.00 34,235.00 34,571.20 34,292.40 34,235.00

Results are reported for all described methodologies

As mentioned in Sect. 1, airlines face significant monetary costs when disrup-
tions occur. If we consider the reported cost of delays beyond the first 15min, e82
per minute according to CODA [20], we can estimate the associated cost of each
solution. We report these results for instances based on real data in Table3. It can
be seen that consequences of a disruption affecting a reduced number of flights
may escalate quickly to costs over e190,000 (e.g., instance real_100_120). This
observation reinforces the fact that decision support tools can be extremely useful in
disrupted scenarios in order to attain feasible solutions able to reduce incurred costs
in reasonable times.
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6 Conclusions

Operational disruptions are deviations from originally planned operations. Airlines
are among the most affected industries by this kind of events and have to face signifi-
cant associated costs. For this reason, designingmethods to deal with operational dis-
ruptions efficiently are getting an increasing attention from airlines and the research
community.

Cancelled, delayed and diverted flights impact different elements involved in
airlines’ operations: aircraft, crews and passengers. Traditionally, aircraft are seen
as the scarce resource, as well as a more tractable problem due to its size. In this
work, we have tackled the Aircraft Recovery Problem, whose goal is to restore the
original flight schedule as much as possible in a disrupted scenario by means of
swapping aircraft-to-flight allocations and delaying flights when necessary. As real
operations are subject to variability, we define an ARP variant which includes this
inherent uncertainty: the Stochastic Aircraft Recovery Problem.

As a first step, we have developed a Constraint Programming model to solve
the deterministic ARP. To the best of our knowledge, it is the first CP formulation
presented for this problem. We integrate this model within a Large Neighbourhood
Search framework, a metaheuristic which has proved to be very efficient when com-
bined with CP to cope with a variety of combinatorial optimisation problems. In our
approach, we embed the CP model in operators and take advantage of constraint
propagation efficiency in the destroy and repair phases of the LNS. Concretely, we
unassign a set of variables in the destroy phase and use an exact branch and bound
method to re-optimise the partially destroyed solution. This method has shown to be
efficient for solving the ARP.

In order to deal with the stochasticity present in the SARP, we have modified our
LNS approach and included simulation at different stages of the search. In particular,
we define two LNS-based frameworks that make extensive use of simulation. In our
first schema, the SimLoop, simulation is performed at the end of the LNS method.
This way, we simulate the solution obtained in the optimisation process to check its
robustness. In this test, different criteria for robustness or solution’s characteristics
may be used. If the solution is rejected, a new lower bound is imposed and the LNS
process is re-launched. In our second approach, the SimLNS, simulation is integrated
at an earlier stage of the search. After the destroy/repair phase of the LNS, we test
the obtained solution in several simulated scenarios and utilise these results in the
acceptance criterion. Therefore, we check solutions’ behaviour before accepting or
rejecting them, allowing to detect undesirable attributes earlier in the process.

Results show that the proposed LNS variants constitute an efficient approach to
tackle the SARP. Indeed, as they are defined as general methodologies, the pre-
sented LNS-based methods can be used to solve any combinatorial problem where
stochasticity is an inherent characteristic of the system. In general, the SimLNS
methodology provides the best solutions for most instances, although computational
times are slightly higher because of a major number of simulated scenarios. Among
defined instances, we have observed that scenarios based on real data provide few
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margin for improvement due to network configuration and oversized buffers. We
believe that further developments on efficient tools to support decision making in
disrupted scenarios may lead to schedules with reduced buffer times, as airlines may
be able to respond more effectively to unforeseen events.

The work presented in this chapter leaves several lines open for future research.
On the one hand, we aim at improving search efficiency and being able to increase
neighbourhood’s size. With this purpose, a more effective CP representation of the
ARP is to be developed in order to enhance constraint propagation. This upgraded
formulation may include other elements present in a disrupted scenario, i.e. crews
and passengers. On the other hand, we contemplate integrating simulation within
the CP search tree. This way, simulation is used to propagate most likely values
in the domain of stochastic variables during search, instead of simulating complete
scenarios after labelling variables in a deterministic fashion.
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