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Abstract

Air transport operational disruptions arise when operations deviate from the original plan. Due
to airlines network configuration, delays are rapidly propagated to connecting flights, substantially
increasing unexpected costs for the airlines. The goal in these situations is therefore to minimise the
impact of the disruption, reducing delays and the number of affected flights, crews and passengers.
However, the reach of a specific disruption is not normally known or it is difficult to assess, increas-
ing the complexity of the problem. In this work, we introduce a methodology based on a Large
Neighbourhood Search metaheuristic and a Constraint Programming formulation to tackle the Air-
craft Recovery Problem with stochastic delays. We use simulation to help guiding the search, account
for system’s variability, and evaluate solutions’ behaviour. We present some preliminary results on
a set of instances with different sizes and characteristics, including some instances originating from
real data.

1 Introduction

A flight schedule includes all flights serviced by a given fleet within a certain period of time. They
contain the scheduled departure and arrival times, expected flight durations, and turnaround times. Flight
schedules are usually made several months prior to the actual day of operation. Specific aircraft are
normally assigned closer to the departure date. However, changes often occur in the period from the
construction of the plan to the day of operation. These changes may include unforeseen delays due to
weather phenomena, turnaround operations, air traffic control, mechanical failures, etc.

Operational disruptions are deviations of originally planned operations due to unexpected events.
If these disruptions are not properly managed, they can cause a large impact on operations, not only
locally but also through the airline network. The costs associated to them have gained more and more
importance with the increase of fuel costs and the punctuality policies that airlines have been forced to
implement in order to maintain competitiveness [4].

Among the different elements involved in a disrupted scenario (aircraft, crews and passengers), air-
craft have received most attention from the research community, since it is normally considered the
scarce resource. In this work, we focus on the Aircraft Recovery Problem (ARP), which is regarded to
be NP-Hard [1]. When perturbations occur, the main goal for the airline is to restore the flight schedule
as quickly as possible, minimising the number of cancellations and the total delay. Given an original
flight schedule and one or more disruptions, the ARP consists of changing aircraft-to-flight allocations
and introduce slight schedule modifications to produce a revised flight schedule. These changes may
involve delaying or cancelling flights, swapping aircraft between flights, or use of standby aircraft.

These strategies are particularly effective depending on the airline network configuration. For ex-
ample, Low-Cost Carriers (LCC) can benefit from them due to the nature of their operations [2]. LCCs
generally use only one fleet family with the same seat configuration. This strategy helps reducing main-
tenance and certification costs. It also adds the possibility for swapping aircraft with minimum impact
on operations, since the fleet will have homogeneous capacity and all crews will be properly certified.
Additionally, LCCs usually operate short-haul flights with short scheduled turnaround times. This allows
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LCCs to increase aircraft productivity, but also reduces rotation times and adds opportunities for aircraft
swaps in case of disruption. Moreover, these flights are usually scheduled as point-to-point operations.
Therefore, a change in the schedule will have limited or no effect on potential connecting passengers.
Finally, they aim at reducing costs by using a limited number of bases (usually in secondary airports),
where aircraft return for overnight operations. Hence, aircraft can generally be swapped with minimum
disturbances on their maintenance cycles.

As a variety of tasks have to be performed to ensure that an aircraft is ready to depart, many sources
may introduce variability to the system. Therefore, the nature of the ARP may be considered stochastic.
In addition, any variation may rapidly propagate due to the network configuration. In a previous work
[3], we tackled this problem by means of a methodology combining Large Neighbourhood Search (LNS)
with a Constraint Programming (CP) model. This approach includes Monte Carlo (MC) simulation at
different stages of the search process. This way, we are able to improve solutions’ behaviour in different
situations, since solutions are only accepted if they perform better than the incumbent in a variety of
simulated scenarios. In this work, we increase system’s variability by introducing stochastic delays to
reproduce real-life operations. In general, the duration of delays or the extent of a disruption is not
fully known at the time when decision making takes place. We also consider situations where delays
and their propagation in the network are not independent, e.g. ground crew may shorten turnaround
operations for an aircraft arriving late, trying to mitigate delay effects. This dependent operations require
a more sophisticated delay propagation model and a revised CP formulation, introduced in this work.
In addition, simulation and its utilisation during the search process becomes critical, since deterministic
values provide a less accurate representation of real operations. This methodology has been assessed
on a set of instances with different characteristics, some of them obtained from real data provided by a
Spanish airline. We apply this approach to a set of scenarios with stochastic disruptions, which is a better
representation of realistic operational situations.

2 Methodology and Preliminary Results

Large Neighbourhood Search has proved to be an efficient metaheuristic to deal with complex com-
binatorial optimisation problems. However, LNS is designed to provide high-quality solutions under
deterministic scenarios. In some real-life problems, like in the case of the ARP and many air transporta-
tion applications, uncertainty is present. In these cases, a deterministic approach may not be accurate
enough, since it does not reflect the real stochastic nature of the system. Therefore, it is necessary to
extend the deterministic framework to account for the variability of the system.

Algorithm 1: SimLNS

1 xb ← Original schedule x
2 repeat
3 x′ = repair(destroy(xb))
4 x̄′ ← Simulation(x′)
5 if f(x̄′) < f(x̄b)] then
6 xb ← x′

7 until stopping condition is met
8 return xb

Algorithm 1 depicts our LNS-based approach to tackle the stochastic ARP. For this problem, the
destroy operator consists of unassigning all flights and connections from a given number of airports (1
to 3 airports, depending on the stage of the search). As a repair method, we use a branch-and-bound
algorithm combined with the CP model to solve the generated smaller problems to optimality. The
process repeats until no further improvements are found by the algorithm.

In our approach, we integrate MC simulation at an early stage in the process. In this case, simulation
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is embedded in the acceptance criterion instead of being used to just evaluate the final result. The solution
obtained after applying the destroy and repair methods is then tested in a set of scenarios before deciding
whether it is accepted or discarded. Simulation results may be used to evaluate the solution in different
ways. The most common approach consists of accepting solutions which, on average, are better than
the incumbent. Hence, we are only accepting solutions whose average behaviour is better than previous
solutions.

By moving the simulation step to the acceptance criterion, our goal is to detect earlier in the process
solutions with undesired attributes. On the other hand, this increases the number of solutions to be
evaluated with respect to a more traditional approach, where simulation takes place at the end of the
optimisation process. Thus, the required computational time is expected to increase with respect to a
deterministic approach using simulation at the end of the process. These effects can be observed in our
results, summarised in Table 1.

Scenario # Flights # Airports # Aircraft Delay Det. Sol. CPU (s) SimLNS CPU (s) Gap Sol. (%)
1 50 10 11 30 216.1 0.972 203.3 1.799 -5.9
1 50 10 11 60 604.2 6.961 560.9 7.072 -7.2
1 50 10 11 90 1130.1 25.987 1045.1 17.094 -7.5
1 50 10 11 120 1644.2 81.495 1600.5 144.159 -2.7
2 110 23 52 30 2301.1 17.303 2235.6 34.489 -2.8
2 110 23 52 60 2519.7 7.671 2446.8 15.427 -2.9
2 110 23 52 90 3174.4 18.433 3150.9 28.865 -0.7
2 110 23 52 120 4746.0 22.323 4672.2 33.655 -1.6
3 110 23 52 30 450.8 5.961 445.3 11.883 -1.2
3 110 23 52 60 901.7 5.865 892.2 12.459 -1.1
3 110 23 52 90 1512.4 8.495 1477.2 33.139 -2.3
3 110 23 52 120 2282.4 17.405 2225.0 43.598 -2.5

Table 1: Results for 3 scenarios with 4 different levels of delay.

We observe that, for the 3 designed scenarios and for different levels of delay, our SimLNS algo-
rithm outperforms the deterministic approach when we account for variability in the system. Therefore,
introducing simulation at an earlier stage improves solution’s quality in more realistic scenarios, but may
increase the required computational time.

In the near future, we are planning to extend this study to include further results and evaluations of
our methodology. Current lines of research include the development of a more refined delay propagation
model, considering actual operations and mitigation strategies. Furthermore, we are adapting a real
schedule from a Spanish LCC to further assess our SimLNS approach. This schedule provides a larger
size benchmark to test the validity of our approach.
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