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ABSTRACT 
This paper presents a methodology based on the Variable Neighbourhood Search metaheuristic, 
applied to the Capacitated Vehicle Routing Problem. The presented approach uses Constraint 
Programming and Lagrangean Relaxation methods in order to improve algorithm’s efficiency. 
The complete problem is decomposed into two separated subproblems, to which the mentioned 
techniques are applied to obtain a complete solution. With this decomposition, the methodology 
is able to provide a quick initial feasible solution which is rapidly improved by metaheuristics’ 
iterative process. Constraint Programming and Lagrangean Relaxation are also embedded within 
this structure to ensure constraints satisfaction and to reduce the calculation burden. By means of 
the proposed methodology, promising results have been obtained. Remarkable results presented 
in this paper include a new best-known solution for a rarely solved 200-customers test instance, 
as well as a better alternative solution for another benchmark problem. 
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INTRODUCTION 
Routing vehicles to collect or delivery goods is a problem which many companies face each day, 
laying at the heart of many distribution systems. In practice, objectives and constraints are highly 
variable and, most of times, complex. In fact, real problems often require a specific modelling 
and solving methodology. On the other hand, most research is focused on well-known sets of 
academic problems including certain characteristics. However, since flexible and efficient 
algorithms are likely to be adapted to various practical contexts, these prototype problems 
become a nice reference where to test developed methodologies. 

This class of logistics problems, usually known as the Vehicle Routing Problem (VRP), is 
among the most popular research areas in combinatorial optimization. Since it was first defined 
by Dantzig and Ramser (1959), several variants of the basic problem have been proposed and 
studied. The most basic VRP is the Capacitated Vehicle Routing Problem (CVRP) that assumes 
a fleet of vehicles with homogeneous capacity housed in a single depot. It is so a generalization 
of the Travelling Salesman Problem (TSP) and is therefore NP-hard (Savelsbergh, 1985). For 
such problems, finding an optimal solution requires a high computational effort. 
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Several formulations and exact algorithms have been proposed to solve the CVRP. However, 
for large instances the time required to solve them becomes absolutely prohibitive due to its NP-
hardness. Thus, exact algorithms may only deal with small instances, up to 100 customers 
(Cordeau et al., 2007), solving them to optimality. Numerous heuristics and metaheuristics have 
also been studied for different VRP variants. In most cases, these methods may solve larger 
instances but loosing optimality guarantees. This field has deserved special attention from the 
research community and has stimulated the emergence and the growth of several metaheuristics 
of general applicability. A recent overview of available methods for different VRP variants can 
be found in Cordeau et al. (2007). 

Compared with classical heuristics, such as route construction and improvement methods or 
two-phase approaches, metaheuristics are less likely to end trapped in a local optimum. Results 
justify community's interest in this field. As an example, the large number of Tabu Search based 
algorithms produced over the last years (Cordeau & Laporte, 2004) is remarkable. Among 
metaheuristics, Variable Neighbourhood Search (VNS), introduced for the first time in 
Mladenovic and Hansen (1997), is a quite recent method with far less application examples in 
VRP research. However, interesting results have been obtained even applying the simplest VNS 
algorithm, the Variable Neighbourhood Descent (VND) (Bräysy, 2003; Hasle & Kloster, 2007; 
Rousseau et al., 2002). For this reason, VNS has been selected as the general framework where 
to embed Constraint Programming (CP) and Lagrangean Relaxation (LR) approaches to the 
CVRP. By using these two well-known paradigms within the VNS local search process, 
calculation time may be reduced with respect to classical VNS schemes. Such a hybrid 
methodology has been adopted as a first approach, suitable to be modified and improved in order 
to tackle more complex VRP variants, i.e. VRP with Time Windows (VRPTW) and the Pick-Up 
and Delivery VRP with Time Windows (PDTW). With this objective, the CVRP has been 
chosen to test algorithm’s effectiveness and major efforts have been addressed to obtain good 
quality solutions rather than low computation times. Thus, the presented approach becomes a 
necessary first step to analyse other VRP categories, for which main guidelines introduced in this 
paper still hold. 

This paper is aimed to present a general VNS structure whose local search process is based on 
CP and LR. The CVRP is divided into two separate subproblems which are modelled and solved 
using mentioned paradigms. The present paper explains the chosen decomposition and how 
separate problems are tackled in terms of CP and LR approaches. Promising results, both for 
finding a quick initial solution and for solving the whole problem, are also shown. Remarkable 
results presented in this paper include a new best-known solution for a rarely solved 200-
customers benchmark problem, as well as an alternative solution, with a lower cost and using 
one vehicle less, for a well known one. 

The remainder of this article is structured as follows. Next section provides a general 
overview of CVRP formulation, emphasizing the decomposition used in the proposed method. 
An introduction to Lagrangean Relaxation is presented afterwards. The following section is 
devoted to the proposed method, based on the VNS metaheuristic; the general algorithm, moves 
used within its structure and the adapted LR-method are introduced in this section. Next, 
computational results are presented and discussed. Finally, some conclusions, remarks and future 
research topics are outlined in the last section. 
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PROBLEM FORMULATION 
The symmetric CVRP can be considered as a complete undirected graph G=(I,E), connecting the 
vertex set I={1, 2, ..., n} through a set of undirected edges E={(i,j) | i,j ∈ I}. The edge eij ∈ E has 
associated a travel cost cij, supposed to be the lowest cost route connecting node i to node j. Each 
vertex i ∈ I\{1} has a nonnegative demand qi, while vertex 1 corresponds to a depot without 
associated demand. A fixed fleet of m identical vehicles, each of capacity Q, is available at the 
depot to accomplish the required tasks. 

Solving the CVRP consists of determining a set of m routes whose total travel cost is 
minimised and such that: (a) each customer is visited exactly once by a single vehicle, (b) each 
route starts and ends at the depot, and (c) the total demand of the customers assigned to a route 
does not exceed the vehicle capacity Q. Therefore, a solution to the CVRP is a set of m cycles 
sharing a common vertex at the depot. In some cases, the fleet size is not fixed and minimising 
the total number of used vehicles becomes an additional objective. 

In the proposed model, the CVRP has been divided into two subproblems, concerning 
customers’ allocation and routing optimization separately. The first is aimed to assign customers 
to vehicles fulfilling capacity limitations. The latter is used to solve each independent route to 
optimality, giving the best solution for a particular allocation. Thus, routing optimization process 
can be viewed as solving a set of m independent symmetric TSP. CP is used to find a feasible 
solution in terms of capacity, while routing problems are solved by using LR. 

 
Capacity problem 
Constraint Programming is a powerful paradigm for representing and solving a wide range of 
combinatorial problems. Problems are expressed in terms of three entities: variables, their 
corresponding domains and constraints relating them. The problems can then be solved using 
complete techniques such as depth-first search for satisfaction and branch and bound for 
optimization, or even tailored search methods for specific problems. Rossi et al. (2006) presents 
a complete overview of CP modelling techniques, algorithms, tools, and applications. 

The proposed capacity subproblem uses the following variables: 
• R = R1, ..., Rn with an integer domain [1..m] 
• Qv = Q1, ..., Qm with a real domain [0..Q] 
 
R is a list of n variables, corresponding to the n customers. Each Ri value indicates which 

vehicle is serving the ith customer, and so it can take values from 1 to m. R1 value is not relevant, 
since it corresponds to the depot and has no associated demand. However, it is included for 
simplicity reasons on defining variables lists. 

Qv is a list of m variables used to trace the cumulative capacity at each of the m routes. 
Capacity constraints are enforced through domains definition, forcing each Qv to take values up 
to a maximum corresponding to vehicles' capacity Q. 

A set of dimension m x n of binary variables B has been introduced to relate R and Qv values. 
For each vehicle v ( v=1, ..., m), a list of n binary variables Bvi ( i=1, ..., n) is defined, taking 
value 1 whenever customer i is assigned to vehicle v and 0 otherwise. Since each customer i is 
visited by a single vehicle, for all values of v the binary variable Bvi can take value 1 only once. 
This constraint is expressed in terms of the global constraint occurrences, included as a built-in 
predicate in the software ECLiPSe (Apt & Wallace, 2007), a specific platform aimed to 
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developing and solving CP models programmed in Prolog, and suitable to be linked with 
external applications.  

 
occurrences(1, Bvi, 1)  ],1[ mv∈∀         (1) 
 
Expression (1) states that value 1 can occur only once in the list of variables Bvi, i.e. for a 

fixed value i, only one of the m elements of the list Bvi can take value 1. Predicate occurrences 
may be seen as an implementation of the general global constraint cardinality (Beldiceanu et al., 
2005). 

Using global constraints increases the search efficiency. Whenever a variable is instantiated 
during the search process, propagation mechanisms reduce uninstantiated variables' domains to 
some degree (Bessiere, 2006). Global constraints ensure a faster reduction of domains through 
specifically programmed propagation methods. Moreover, they allow a clean and fast definition 
of constraints patterns for sets of variables of any size. 

The binary set B and allocation variables R are related through the following statement: 
 

IiBrR irii i
∈∀=→=    1         (2) 

 
Expression (2) states that the ith element of the ri list of B will have value 1 whenever the ith 

component of R takes value ri. Global constraint (1) ensures propagation so all values of Bvi | v ∈ 
{1,...,m}\ri are set to 0 automatically. Therefore, cumulative capacities can be traced simply by 
using the following equation: 

 
VvqBQ

Ii
iviv ∈∀= ∑

∈
            (3) 

 
The proposed formulation is used to find a partial initial solution fulfilling capacity 

constraints. By solving resultant routing problems, which are always feasible because they do not 
contain any additional constraints, a complete initial solution may be easily obtained in most 
cases. Thus, capacity problem's goal is to find a feasible solution with the minimum number of 
required vehicles. With this objective, a depth-first search method is applied to find a feasible 
solution that uses all available vehicles. A vehicle is removed from the list and the process is 
repeated recursively. The algorithm stops when unfeasibility is reached, returning the last 
feasible solution found in the previous iteration. 

 
Routing problem 
The routing problem, tackled for each vehicle separately, can be viewed as a TSP instance. The 
TSP is probably the best known combinatorial problem: “A salesman is required to visit once 
and only once each of n different customers starting from a depot, and returning to the depot. 
What path minimises the total distance travelled by the salesman?” (Bellman, 1962). 

For each vehicle v, the related TSP can be considered as a complete undirected graph 
G=(Iv,Ev), connecting assigned customers Iv={i ∈ I | Ri=v} through a set of undirected edges 
Ev={(i,j) ∈ E | i,j ∈ Iv}. The solution is a path connected by edges belonging to Ev that starts and 
ends at the depot (i=1) and visits all assigned customers. 
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Then a feasible solution of the TSP should, by definition, also satisfy constraints (a) and (b) of 
the CVRP, minimising the total travel cost of the route. 

The proposed mathematical formulation requires defining the binary variable xe to denote that 
the edge eij in Ev is used in the path: 
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=
otherwise.0
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The proposed mathematical formulation for the TSP problem is as follows: 
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where  
• { }),(or  ),(,|)( ijjieIjEei vv =∈∃∈=δ  represents the set of arcs whose starting or ending node is 

i. 
• { }VjiEjieVE vv ∈∈== ,|),()(  represents the set of arcs whose nodes are in the subset of 

vertices V. 
• nv=|Iv| 
 
The objective function (4) aims to minimise the total cost of the route. Constraint (5) states 

that every node i ∈ Iv must be visited once. Since ce is the associated cost to the undirected edge 
ije  ( jie ), every customer must have two incident edges. Subtour elimination constraint (6) states 

that the tour must be a Hamiltonian cycle, e.g. for every pair of vertices there is a path 
connecting them, so it can not have any subcycle. This constraint avoids any subcycle of the 
subset V, since the number of edges must be lower than the size of the subset. It only considers 

the subset V which 
1| |
2 vV n≤ . For any solution containing more than one subcycle, at least one 

of them will fulfil 
1| |
2 vV n≤ . If these are banned, all subcycles are avoided. 

 
LAGRANGEAN RELAXATION 
Lagrangean Relaxation is a well-known method to solve large-scale combinatorial optimization 
problems. It works by moving hard-to-satisfy constraints into the objective function associating a 
penalty in case they are not satisfied. An excellent introduction to the whole topic of LR can be 
found in Fisher (1981). For a recent review, see Guignard (2003). 



LR exploits the structure of the problem, so it reduces considerably problem’s complexity. 
Thus, the Lagrangean Problem needs less computational effort to be solved. However, it is often 
a major issue to find the optimal Lagrangean multipliers. The commonly used approach is the 
Subgradient Optimization method. It guarantees convergence, but it is too slow to become a 
method of real practical interest. 

The proposed LR-based method improves the convergence on the optimal solution of the 
Subgradient Optimization by using a heuristic to obtain a feasible solution from a LR solution. If 
the optimal solution is not reached at a reasonable number of iterations, the proposed method is 
able to provide a feasible solution with a tight gap between the primal and the optimal cost. 

Given the assigned customers to each vehicle, the proposed LR-based method is used to solve 
associated routing problems. In this proposed approach, LR relaxes the constraint set requiring 
that all customers must be served (5), since all subcycles can be avoided constructing the 
solution x as a 1-tree. Actually, a feasible solution of the TSP is a 1-tree having two incident 
edges at each node. A 1-tree can be defined as a tree on the graph induced by nodes {2,...,nv} plus 
two incident edges at node 1 (Held & Karp, 1971). 

The Lagrangean Dual problem obtained from the TSP formulation, moving into the objective 
function equalities (5), is: 
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where the Lagrangean function is: 
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This LR relaxes constraints (5) weighting them with a multiplier vector u of appropriate 

dimension and unrestricted sign, defining the subgradient ∑
∈

−=
)(

2
ie

ei x
δ
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Finding a minimum spanning tree induced by nodes {2,...,nv} is relatively easy, so the 
presented relaxation becomes potentially interesting. Prim’s Algorithm is commonly used for 
finding a minimum spanning tree (Laporte, 1992). Its time complexity is O(N2), where N=nv-1 is 
the number of vertices. 

The Subgradient Optimization is an iterative method used to solve the Lagrangean problem 
finding a maximum value of the lower bound (Held et al., 1974). The main difficulty of this 
algorithm lays on choosing a correct step-size kλ  (Wolsey, 1998). This is a critical choice, since 
the convergence can be highly influenced by this parameter (Reinelt, 1994). 

Being LB a dual lower bound and L* the optimal value, so *LLB ≤ , the step-size is defined 

according to 2
)(

k

k

kk
uLLB

γ
δλ −

=  with 20 ≤< kδ . Then, LBuL k →)( , or the algorithm finds uk 

with *)( LuLLB k ≤≤  for some finite k. In practice, LB is typically unknown and it is more likely 
to know a good primal upper bound *LUB ≥ . Such an upper bound UB is then used initially in 
place of LB. However, if *LUB >> , the term UB-L(uk) in the numerator will not tend to zero, and 
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so sequences {uk} and {L(uk)} will not converge. In order to find a feasible solution of the TSP, 
which may give an accurate UB, a Nearest Neighbour Heuristic is applied. This method is 
commonly used with this purpose, since it is computationally efficient and easy to implement. 
 
SOLUTION METHODS 
The described problem has been tackled using a hybrid approach. The proposed methodology 
combines CP and LR within a metaheuristics framework in order to improve algorithm’s 
performance. As mentioned, even the most basic Variable Neighbourhood Search algorithm, 
known as Variable Neighbourhood Descent (VND), has provided promising results when solving 
different VRP variants. In the proposed approach, a general Variable Neighbourhood Search 
(VNS) framework has been chosen to embed selected paradigms. A complete and revised 
description of different VNS algorithms can be found in (Hansen & Mladenovic, 2003).  

In any case, other well known metaheuristics could have been used to embed CP and LR, 
such as Tabu Search (TS) or Genetic Algorithms (GA). Both metaheuristics have been widely 
used for tackling different VRP variants obtaining good results (Bräysy & Gendreau, 2005). 
However, VNS permits overcoming some of their limitations. On the one hand, TS is based on a 
local search where the process may lead to worse solutions in order to escape from local minima. 
It may be comparable to the VND algorithm, but the latter has the advantage of alternating 
different moves to explore the search space. Swapping these neighbourhoods structures allows 
escaping from local minima in a more natural manner and avoids defining and tuning tabu lists 
and aspiration criteria. Moreover, by using a general VNS scheme, a diversification process is 
naturally introduced and integrated within the algorithm, so search is restarted at each iteration 
from a point obtained from the best solution found so far. This diversification process may be 
tuned so the algorithm behaves conservatively or following a multistart strategy. On the other 
hand, GA requires defining some parameters that become critical for algorithm’s performance, 
such as the population size or crossover and mutation ratios. According to problem dimensions, 
managing correctly the memory used to store population data may become a major issue. In 
some cases, reducing the population size may lead to misleading results (Reeves, 2003). Thus, 
finding a trade-off between efficiency and effectiveness often needs a fine-tuning process that is 
not required when using a VNS algorithm. For these reasons, the general VNS has been selected 
as the main structure that leads the search process in the proposed methodology. 

Within the general VNS framework, CP and LR are used in different processes. During 
algorithm’s initialization, CP is used to find an initial feasible solution by means of capacity 
constraints. CP is also used to check solutions feasibility within diversification and local search 
processes.  

In turn, a tailored LR method is applied to calculate routes every time a partial solution is 
generated either during initialization, diversification or local search processes. Using LR allows 
reducing the computation time when compared to other routing post-optimization methods, such 
as a VND with single-route classical moves. So, the proposed LR approach provides optimal 
routes in very low times and, at the same time, permits reducing algorithm’s definition and 
complexity. 

 
Proposed Lagrangean Relaxation method 
The proposed LR-based method is used within the local search process to solve routing 
subproblems to optimality. It can be considered a specification of the Lagrangean Metaheuristic 
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presented on Boschetti & Maniezzo (2009). It uses the Subgradient Optimization algorithm 
combined with a heuristic. Aiming to improve algorithm's convergence to the optimal solution, a 
heuristic is introduced in order to obtain a feasible solution from the dual variable. This method 
tries to improve the UB with the values of these feasible solutions, so a better convergence is 
obtained. Eventually, this feasible solution may be provided as the best solution if the method is 
stopped. The stopping criterion is based on the maximum number of iterations (k < maxiterations) 
and also on a floating-point exception ( 1510−<kλ ). The proposed LR-based method is shown in 
Algorithm 1. 

 
Algorithm 1: The Proposed LR-based Method 
0 Initialization 
1  Initialize parameters 3/1;95.0;2;0 0

0 ===≡ Lu αρδ  
2  Obtain an UB applying Nearest Neighbour Heuristic 
3  Initialize ))(()( 00 uLUBuLL L −+= α  
4 Iteration k 
5  Solve the Lagrangean function )( kuL  

6  Check the subgradient ∑
∈
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2
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k
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δ
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7   if ( 0
2
=kγ ) then Optimal solution is found ⇒  EXIT 

8   if ( ζγ <
2k ) then apply a heuristic to improve the UB 

9  Check the parameter L  

10  Calculate the step-size 2
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k

k

kk
uLL

γ
δλ −
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11  Update the multiplier k
k

kk uu γλ+=+1  
12  1+← kk  

 
The proposed heuristic to improve the UB is applied when the solution is nearly a route. That 

is, if it satisfies ζγ <
2k  (step 8). As any solution is a 1-tree, this criterion means that the 

solution has few vertices without two incident edges. This heuristic replaces an edge eij where j 
has some extra edges for an edge eil where l has one single edge. Before applying the exchange, 
the heuristic checks if the new solution is a 1-tree. Otherwise, the heuristic can divide it into 
more trees having some subtours. The chosen vertices i,j,l minimise the cost of the exchange: 

 
{ }0,1,0,0,0:minarg},,{ ==≤><−= ilijiljijil xxcclji γγγ     (9) 

 
The parameter ζ  depends on the number of variables. A good estimation of ζ  value would 

avoid increasing the computation time. First, its value may be large, for instance nv/2, but it 

should be updated whenever a feasible solution is found according to 
2kγζ = . If this 



parameter is not correctly updated, the heuristic becomes time consuming. Eventually, the 
heuristic could find the optimal solution without detecting it, so the method would continue 
iterating until LB=UB. 

As mentioned, algorithm's convergence is critically influenced by the step-size kλ . This value 
relies on either the LB or the UB, which are normally unknown or bad estimated. Therefore, 
convergence may not be assured for all cases. In order to overcome this limitations, the use of a 
parameter L , such that UBLLB ≤≤ , is proposed. By definition, this parameter corresponds to a 
better estimation of the optimum L* than those obtained for LB and UB. The calculation of the 
step-size turns into: 

 

2
)(

k

k

kk
uLL

γ
δλ −

=           (10) 

 
Convergence is guaranteed if the term )( kuLL −  tends to zero. In turn, convergence 

efficiency can be improved as long as the new L  parameter gets closer to the (unknown) optimal 
solution. The main idea is very simple: as the algorithm converges to the solution, new better 
lower bounds are known and new better upper bounds estimations can be obtained by using the 
heuristic designed to get feasible solutions. Therefore, the parameter L  is updated according to 
the following conditions: 

• It is initialized ))(()( 00 uLUBuLL L −+= α  with 10 << Lα . 
• If LuL k >)( , it is updated ))(()( k

L
k uLUBuLL −+= α . 

• If UBL > , finally UBL = . 
 
Finally, the parameter kδ  is initialized to the value 2 and is updated as Zamani & Lau (2010) 

suggest. If the lower bound is not improved, kδ  is decreased, using the formula ρδδ kk =+1  with 
10 << ρ . On the other hand, if the lower bound is improved, then its value is increased 

according to the formula
2

31 ρδδ −
=+ kk , providing that 20 ≤≤ kδ  to ensure convergence. 

 
Inter-route moves 
VNS metaheuristic is based on exploring alternatively different neighbourhoods around a known 
feasible solution. In order to establish these neighbourhoods, different moves are to be defined. 
In the presented approach, four different inter-routes classic moves (Savelsbergh, 1988) have 
been defined so they can be used within diversification and local search processes (Figure 1):  
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(a) Relocate 
 

 

(b) Swapping 
 

 

(c) Chain 

 

(d) Ejection chain 
Figure 1. Inter-route movements. 
 

• Relocate: moves a customer from one route to a different one. 
• Swapping: exchanges two customers belonging to two different routes. 
• Chain: is a specialization of 3-opt that swaps sections of two contiguous customers from 

two different routes. 
• Ejection chain: swaps the end portions of two different routes. In the implemented 

approach, the relative percentage of customers modified has been arbitrarily set to 40 %. 
 

As mentioned, using LR for solving the routing subproblems allows avoiding the definition of 
intra-route moves. Since results provided by the LR method are optimal, no routing optimization 
process is needed. Usually, a post-optimization method based on intra-route moves is applied to 
improve each single route quality (Rousseau et al., 2002). 
 
Variable Neighbourhood Search framework 
A general VNS framework, as explained in Hansen & Mladenovic (2003), has been implemented 
embedding the described methods. A simplified scheme of the method is presented in Algorithm 
2. At each iteration, a local minimum is reached departing from an initial solution. A 
diversification process (shaking) ensures that different regions from the search space are 
explored by changing the initial solution at each iteration. 
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Algorithm 2: Variable Neighbourhood Search 
0 Initialization. Select the set of neighbourhood structures Nk, for k=1,...,kmax, that will be used 

in the shaking phase, and the set of neighbourhood structures Nl for l=1,...,lmax that will be 
used in the local search; find an initial solution x; choose a stopping condition; 

1 Repeat the following sequence until the stopping condition is met: 

2  Set 1←k ; 

3  Repeat the following steps until maxkk = : 

4   (a) Shaking. Generate a point x’ at random from the kth neighbourhood Nk(x) of x; 

5   (b) Local search by VND. 

6     (b1) Set 1←l ; 

7     (b2) Repeat the following steps until maxll = ; 

8      - Exploration of neighbourhood. Find the best neighbour x’’ of x’ in Nl(x’); 
9      - Move or not. If f(x’’)<f(x’) set ''' xx ←  and 1←l ; otherwise set 1+← ll ; 

10   (c) Move or not. If this local optimum is better than the incumbent, move there 
( ''xx ← ), and continue the search with N1 ( 1←k ); otherwise, set 1+← kk ; 

 
In step 0, neighbourhood structures to be used within shaking (Nk) and local search (Nl) 

processes are selected. In the proposed implementation, all four described moves have been 
selected to be used in both neighbourhoods. As a first step in the algorithm, an initial feasible 
solution is found using CP and LR. CP is used to assign all customers to available vehicles 
fulfilling capacity constraints, while resulting routes are solved to optimality by means of LR. 
Finally, the stopping criterion is chosen to be based on the maximum number of iterations. 

In step 4, a new point is generated at random from the kth neighbourhood Nk(x) of x in order to 
diversify the search. Its feasibility is immediately checked using CP. If the generated point is 
unfeasible, the process is repeated until a new feasible point is found. However, if the valley 
surrounding the solution x is large, a thorough diversification should be done aiming to avoid 
getting trapped in a local optimum. For this reason, the implemented shaking process is repeated 
several times. Solutions’ values are ignored until the last iteration, when routes are recalculated 
using LR to provide a complete solution. 

Steps 5 to 9 contain the VND algorithm used to perform the local search. It should be 
remarked that it takes advantage of all neighbourhood structures for l=1,...,lmax, instead of 
applying a simple local search method. In any case, it may also get trapped in a local optimum. 
For this reason, VND is used within a diversification/local search iterative process (steps 3 to 
10). 

Within the VND algorithm, an exhaustive exploration of the lth neighbourhood Nl(x’) of x’ is 
performed in step 8. Departing from the solution x’, the lth move is applied and new solution’s 
feasibility is checked using CP. Whenever it is proved feasible, LR is used to recalculate only 
modified routes. This approach permits to consider only two routes per solution, reducing the 



computation time. Finally, the best neighbour x’’ is chosen in terms of its solution value 

∑
=

=
m

v
vUBxf

1
)''( . 

A slightly different approach has also been implemented for the exhaustive exploration 
performed at step 8. In this case, CP consistency techniques (Bessiere, 2006) are applied to get 
feasible domains for the variables to be modified. Thus, only values corresponding to feasible 
solutions are explored and capacity constraints do not need to be checked afterwards. This 
approach provides the same results, but the calculation time is dramatically increased due to 
consistency algorithms’ high complexity. However, tailored propagation and consistency 
techniques could lead to an important time reduction and so it is a promising line for future 
research work. 

 
COMPUTATIONAL RESULTS 
The methodology described in the present paper has been implemented in Java and linked to the 
open-source CP software system ECLiPSe 6.0 (Apt & Wallace, 2007). All tests have been 
performed on a non-dedicated server with an Intel Xeon Quad-Core i5 processor at 2.66GHz and 
16GB RAM. In general, five to seven processes were launched in parallel to solve different 
problems, while external applications were active at the same time. For this reason, CPU times 
obtained with the proposed methodology are to be considered as approximated. 

A total of 97 classical CVRP benchmark instances have been used to test the efficiency of the 
proposed approach. They have been obtained from (Branchandcut.org, 2003), a reference site 
with a large number of benchmark sets for different combinatorial problems, yet not updated 
results. Best known solutions for problems not solved to optimality have been updated with 
recent references in order to provide a thorough comparative with results obtained by using the 
presented methodology. Instances were selected according to the distance type used in their 
definition. Only those instances whose distance is defined as Euclidean or Geographic have been 
selected, in order to ensure triangular inequality's fulfilment. Therefore, all problems from 
benchmark sets A, B, F, G, M, and P have been included. In addition, those instances from the 
set E accomplishing the mentioned criterion are also considered, as well as 3 TSPLib (Reinelt, 
2008) converted problems (att-n48-k4 and both ulysses instances). 

Distances have been rounded to integers, according to the specification included in the 
TSPLib. This approach allows comparing results obtained with those published in a wide range 
of references working over the same benchmark sets. However, the proposed approach is not 
restricted to work with integer distances, so it can be used without adding any modification to 
solve same instances considering real costs. Although a good number of papers adopt this 
realistic approach, results presented in this paper are aimed to be compared with best known 
integer solutions. In order to compare obtained solutions with best known realistic ones, the 
algorithm should be run using real costs matrices, since rounding distances prior to solving make 
both instances different, and so their corresponding solutions. 

In all tests, swapping has been set as the initial move both for shaking (k=1) and local search 
(l=1) processes. Relocate, chain, and ejection chain are used next whenever the previous 
solution is not improved. A summary of obtained results with this neighbourhood set is presented 
in Table 1. Another test has been done exchanging swapping and relocate priorities, getting a 
similar performance. For this reason, only results from the first configuration are shown. 
However, it is remarkable that, in general, the swapping/relocate configuration has a better 
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performance when applied to class M problems, while relocate/swapping behaves much better 
on class B instances. Probably, performance’s differences rely on customers’ distribution and a 
further revision is to be done in a near future.  

Table 1 presents the number of problems successfully solved to optimality by using the 
proposed methodology, as well as the number of problems whose optimal value was not reached 
and those which could not be solved. Table 1 also shows the average (% Dev.), maximum (% 
Max) and minimum (% Min) deviation from the best known value for those problems that could 
not be solved to optimality. A low deviation is observed for most problem sets, comparable to 
results obtained by means of other metaheuristics. 

 

 

Table 1. Summary of results obtained with a swapping/relocate configuration. 
 
As mentioned, the initial solution is obtained by solving separately capacity and routing 

problems. This approach is able to provide a low-quality quick solution, since both subproblems 
are easily solved but variables are unlinked. However, this solution is highly improved at the first 
iteration. As an example, this approach may provide an initial solution for larger problems, such 
as M-n200-k16, in less than 6 seconds. After the first iteration, its value is usually close to the 
final result. 

Furthermore, the use of LR ensures the partial optimality of all solutions from the routing 
perspective. The reason is that the proposed LR approach can optimally solve all TSP instances. 
As can be seen in Figure 2, LB and UB converge rapidly. For all problems, their gap is always 
located between 0 and 10-10, guaranteeing so the solution optimality. Moreover, LR solves all 
routes in negligible times, due to the number of associated customers is always low. Thus, LR 
has demonstrated to be an efficient alternative for intra-route optimization processes. 



 

Figure 2. Convergence of LB (dashed line) and UB (solid line) in three routes from problem M-n200-k16. 
Although LR maximum number of iterations is set to 300, it usually converges in less than 50 iterations 
for most problems. 

 
The detailed behaviour of the presented method can be observed in Figure 3. The solid line 

corresponds to solution’s evolution, while the dotted line shows algorithm’s behaviour at each 
iteration. Every shaking process draws a peak, while the local search process leads the algorithm 
to a solution with a lower cost. It can be observed that, after some iterations, the local search 
process converges more often to the best solution so far. As the algorithm evolves, so it does 
solution’s structure quality, getting closer to the optimum. Therefore, a more thorough shaking 
process would be needed to get the solution far enough so different regions from the solution 
space were explored. However, it could cause the algorithm to diverge. As an example, when 
chain and ejection chain are applied in the shaking process, the local search process either 
converges slowly or may not find the best solution so far. Since both moves modify larger 
sections than relocate or swapping, the exploration may be leaded to regions far from the 
optimal. 



 

Figure 3. An example of the local search process on problem A-n45-k7 for first 10 iterations. The solid 
line corresponds to final solution evolution, while the dotted line shows the shaking process and the local 
search behaviour. 

 
The proposed methodology performs similarly both for small and large instances. Thus, its 

applicability is not restricted. It is remarkable that the algorithm eventually reaches the optimal 
solution for smaller problems (50 customers or less), but it stops near the optimum for larger 
instances. Tables 2 and 3 present representative results obtained for classes A and P. These 
results are similar to those obtained for remaining classes. Tables 2 and 3 compare obtained 
values to best known solutions (columns BKS and Opt.#veh.). They show the initial and the final 
solution, computational times spent on calculating them, and corresponding gap of the final 
solution. The computational time needed to reach a solution with a gap lower than 2 %, selected 
as a good quality solution threshold, has also been included in all tables. Last column presents 
the iteration where the best-known value is reached or improved, where value -1 indicates that 
the BKS has not been obtained. 

Table 4 shows that the presented approach is able to provide state-of-art results for large 
benchmark instances (100 customers or more). As observed, final values are normally close to 
best known solutions. It is also remarkable the result obtained for the largest selected test 
instance G-n262-k25, which stays slightly (0.44 %) over the best known value presented in 
(Hasle & Kloster, 2007).
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Table 2. Results obtained for class A problems. 
 



 

 

Table 3. Results obtained for class P problems. Improved solutions are marked in bold. 
 

 

Table 4. Results obtained for large problems (100 or more customers). Improved solutions are marked in bold.



Finally, two problems deserve special attention: M-n200-k16 and P-n55-k8. The proposed 
methodology is able to find a new best solution for the first and an alternative solution for the 
latter. A complete description of both solutions can be found in Appendix A for further revision 
and comparison. 

For the test instance M-n200-k16, a new best solution with a value of 1335 has been obtained 
(Figure 4). To the best of our knowledge, only one previous feasible solution with a cost of 1371 
was known (Hasle & Kloster, 2007). It was obtained by means of a VND algorithm embedded in 
the VRP software SPIDER. Taking into account the best known lower bound for this instance 
(1256.4), published in (Baldacci et al., 2008), the solution found reduces the gap between bounds 
from the previous value of 8.36 % to 5.89 %. 

 
 

 

Figure 4. The best known solution so far for the test instance M-n200-k16. 
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Figure 5. Alternative solution (left) to the published optimal configuration (right) for the test instance P-
n55-k8. The proposed alternative solution has been obtained with a relocate/swapping configuration. 

 
The solution found for the test instance P-n55-k8 becomes an alternative to the published 

optimum (Augerat et al., 1995). For this case, a solution with a value of 577 has been found by 
using the swapping/relocate configuration, while a value of 576 (Figure 5) has been obtained 
exchanging moves’ priorities. Both solutions use 7 vehicles, instead of the 8 vehicles used in the 
published optimum. This solution has been marked as P-n55-k8 (a) in Table 3. P-n55-k8 (b) 
corresponds to the solution obtained when forcing the algorithm to use 8 vehicles. As far as we 
know, only two previous works (Alba & Dorronsoro, 2008; Altinel & Öncan, 2005) have also 
presented this alternative value as the best known solution for this instance, while most authors 
keep the original value of 588 using 8 vehicles as optimal.  

In any case, optimality may not be guaranteed in the proposed solution for instance P-n55-k8. 
Instances P-n55-k7 and P-n55-k8 share customers’ distribution and demand, but available 
vehicles have different capacities. Thus, both problems are critically different and the optimal 
value of instance P-n55-k7 can not be chosen as a reference. In fact, the solution of instance P-
n55-k7 is not feasible according to P-n55-k8 vehicles’ capacity. So, the proposed solution has the 
lowest known value for this problem, but its optimality has to be proved by means of an exact 
algorithm. 
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CONCLUSION 
The present paper has presented a methodology combining Constraint Programming and 
Lagrangean Relaxation within a general Variable Neighbourhood Search framework. This 
scheme has been used to tackle the Capacitated Vehicle Routing Problem, obtaining state-of-art 
results comparable to other metaheuristics. 

In the proposed approach, the CVRP has been decomposed into two separated subproblems. 
The first one is aimed to assign customers to vehicles in terms of capacity, while the second is 
used to optimize corresponding routes. This approach allows reducing the computation time, 
since problems to be solved are far less complex than the original CVRP, although still NP-hard. 
In fact, the allocation problem may be assimilated to the Bin Packing Problem, while routing 
subproblem’s goal is solving a set of Travelling Salesman Problems. In both cases, two well-
known paradigms aimed to solve combinatorial problems, CP and LR, have been applied 
obtaining good results. Thus, combining this decomposition with selected techniques provides a 
methodology able to get a quick initial solution to the CVRP problem, even for larger instances. 
Although solution’s quality may be low, it may be rapidly improved by applying a local search 
process, such as the VND algorithm. 

The proposed LR-based method permits to reduce calculation times due to its improved 
convergence with respect to the Subgradient Optimization classical algorithm. It also provides 
optimal routes when the number of customers is relatively small, as it is for all CVRP benchmark 
instances. Combining these characteristics with the adopted approach to the CVRP allows 
reducing the computation time. On the one hand, the selected decomposition makes LR only 
necessary to recalculate two routes at each iteration. On the other hand, the LR-based method is 
faster and simpler than other routing post-optimization processes, since no intra-route moves are 
to be defined and it is less likely to get trapped in iterative processes. 

At the same time, the adopted CP approach has demonstrated to be efficient both for solving 
the capacity subproblem and for checking feasibility at runtime. As mentioned, a slightly 
different approach has been implemented to tackle feasibility checking. Unfortunately, the time 
required for this approach is clearly higher, due to its complexity. However, developing tailored 
CP algorithms to improve its efficiency constitutes an open line for future research. 

It can be stated that the proposed methodology provides competitive results for most CVRP 
test instances. In many cases, it is able to reach best-known or optimal solutions in few iterations. 
Otherwise, the gap is usually low. Furthermore, the presented method has been able to provide a 
new best-known solution for the test instance M-n200-k16, for which only one previous feasible 
solution was known. An alternative solution for the test instance P-n55-k8 has also been 
obtained, reducing the number of vehicles and getting a lower cost. 

It should be remarked that several lines for future research are open. First, different VNS 
schemes are to be studied, such as Variable Neighbourhood Decomposition Search, whose 
shaking process can be improved by embedding CP techniques. Second, heuristic methods are to 
be included into the neighbourhood exploration phase. Finally, the presented methodology is to 
be adapted to different VRP variants, especially those including time windows or pick-up and 
delivery side constraints. 
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APPENDIX A 
This appendix provides information about new best solutions found for problems M-n200-k16 
and P-n55-k8. In both cases, vertex 1 corresponds to the depot. 

 
M-n200-k16 

Cost: 1335 
Route #1: 1, 119, 61, 6, 46, 126, 115, 83, 8, 195, 107, 154, 1 
Route #2: 1, 113, 184, 95, 96, 38, 99, 101, 43, 173, 145, 88, 118, 1 
Route #3: 1, 54, 106, 181, 22, 73, 198, 75, 134, 23, 172, 74, 1 
Route #4: 1, 28, 168, 128, 191, 89, 149, 160, 63, 183, 53, 147, 1 
Route #5: 1, 155, 139, 110, 178, 151, 69, 164, 25, 135, 55, 196, 1 
Route #6: 1, 13, 81, 122, 30, 170, 79, 35, 165, 121, 82, 34, 103, 1 
Route #7: 1, 19, 49, 124, 20, 108, 176, 12, 109, 71, 102, 163, 70, 133, 1 
Route #8: 1, 5, 140, 40, 24, 187, 57, 76, 42, 146, 116, 179, 3, 138, 1 
Route #9: 1, 59, 153, 14, 98, 93, 152, 60, 97, 7, 148, 90, 157, 1 
Route #10: 1, 105, 94, 62, 17, 142, 87, 114, 18, 174, 85, 200, 84, 167, 1 
Route #11: 1, 9, 175, 47, 125, 169, 48, 37, 144, 50, 65, 182, 64, 127, 190, 1 
Route #12: 1, 2, 52, 104, 162, 72, 67, 66, 137, 36, 136, 10, 112, 1 
Route #13: 1, 29, 77, 185, 197, 117, 78, 4, 159, 130, 80, 186, 158, 51, 1 
Route #14: 1, 58, 16, 44, 143, 15, 39, 141, 45, 120, 193, 192, 92, 194, 86, 100, 1 
Route #15: 1, 27, 150, 180, 131, 166, 56, 26, 171, 68, 188, 156, 111, 199, 41, 1 
Route #16: 1, 32, 11, 91, 33, 132, 161, 129, 189, 21, 31, 123, 177, 1 
 

P-n55-k8 
Cost: 576 
Route #1: 1, 8, 36, 15, 54, 12, 39, 27, 1 
Route #2: 1, 3, 29, 22, 37, 48, 49, 31, 1 
Route #3: 1, 13, 11, 32, 26, 51, 19, 25, 50, 52, 1 
Route #4: 1, 5, 28, 53, 35, 47, 1 
Route #5: 1, 7, 34, 2, 23, 43, 42, 44, 24, 17, 1 
Route #6: 1, 9, 20, 55, 14, 16, 21, 38, 6, 30, 46, 1 
Route #7: 1, 18, 4, 45, 33, 10, 40, 41, 1 


