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Abstract. Preparing an aircraft for its next flight requires a set of interrelated services involving different types of 
vehicles. Planning decisions concerning each resource affect the scheduling of the other activities and the 
performance of the other resources. Considering the different operations and vehicles instead of scheduling each 
resource in isolation allows integrating decisions and contributing to the optimisation of the overall ground-handling 
process. This goal is defined through two objectives: (i) minimising the waiting time before an operation starts and 
the total reduction of corresponding time windows, and (ii) minimising the total completion time of turnarounds. We 
combine different technologies and techniques to solve the problem efficiently. A new method to address this bi-
objective optimisation problem is also proposed. The approach has been tested using real data from a major Spanish 
airport, obtaining different solutions that represent a trade-off between both objectives. Experimental results permit 
inferring interesting criteria on how to optimise each resource, considering the effect on other operations. This 
outcome leads to more robust global solutions and to savings in resources utilization. 
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Introduction 
 
The notable growth of air traffic in recent years has led to increasingly congested airports and significant 
flight delays. In 2013, approximately 36% of European flights were delayed on departure by more than 5 
minutes, with an average delay of 26.7 minutes (Eurocontrol, 2013). Many aircraft delays can be 
attributed to overlong turnarounds due to a lack of planning integration of the different activities and an 
inefficient use of resources (Titan, 2010). Turnaround is defined as the period of time the aircraft is on the 
ramp between an inbound and outbound flight. During this time, different ground-handling operations are 
performed. Ground handling comprises the activities, operations procedures, equipment requirements, 
and personnel necessary to prepare an aircraft for the next flight. These ground tasks are very 
interdependent. Therefore, each operation is a potential source of delays that could be easily propagated 
to other ground operations and other airport processes (Fricke & Schultz, 2009; Norin et al, 2009).  
Due to the hierarchy of overall airport planning, ground handlers are generally not included in the 
decision making of other scheduling processes (e.g. flight scheduling, stand allocation, etc.). This means 
they often must fit their planning around a set of hard constraints. These constraints include aircraft 
arrival, departure, scheduled turnaround time, and stand allocation, among others (Leeuwen, 2007). 
In this work, we present a novel and efficient approach to tackling the ground-handling scheduling 
problem from a global perspective, considering all activities to be performed. To the best of our 
knowledge, this is the first time the problem is treated as a whole in the literature. Thus far, other 
approaches have been developed to optimise operations in isolation, but they do not consider the 
relationships between all the involved activities. Regarding ramp operations, Du et al (2008) proposed an 
Ant Colony approach to schedule fuelling vehicles based on the Vehicle Routing Problem with Tight 
Time Windows (VRPTTW) with multiple objectives. Clausen (2011) focused on connecting baggage 
transportation and proposed a greedy algorithm based on an Integer Programming model for the Vehicle 
Routing Problem with Time Windows (VRPTW). Norin et al (2009) proposed an interesting integration 
of a simulation model of various operations during turnaround and the scheduling of de-icing trucks 
obtained by a greedy optimisation algorithm. A more sophisticated solution was proposed by Ho & 
Leung (2010) to tackle catering operations including staff workload. 
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In our approach, we do explicitly consider relationships between activities to solve the problem from a 
global point of view. To do so, we develop a bi-objective optimisation methodology aiming at minimising 
waiting time before operations start and improving overall turnaround performance. We decompose the 
problem to apply efficient techniques. Each task can be modelled as a VRPTW, as it is associated to a 
particular type of vehicle. These are solved individually using the well-known Insertion Heuristics 
method (Solomon, 1987) and a hybrid methodology (Guimarans, 2012). Decisions made on the routing of 
one type of vehicle are propagated to the other tasks (i.e. VRPTWs) through reductions in the available 
time windows. Modifying the order in which problems are solved yields to different time windows 
reductions and different overall solutions. To explore different sequences in an informed manner and to 
address the bi-objective problem, we have developed a new method called Sequence Iterative Method 
(SIM). This process has proved to be a consistent method to solve the complete problem and provide a 
range of solutions representing the best trade-off between the two objectives, as we show in our results on 
data from Palma de Mallorca airport (PMI). 
 
Problem description 
 
Ramp operations take place at the aircraft parking position between the time it arrives at the stand (In-
Blocks) and its departure (Off-Blocks). Figure 1 shows an example of the main activities during a typical 
turnaround when the aircraft is parked at a contact point (i.e. the stand is connected to the terminal via a 
bridge).  
 

 
Figure 1. Example of activity flow during a turnaround at a contact point 

 
Because the turnaround is a very complex process, its duration depends on many different variables. 
These include operational variables related to the aircraft type (size, number of seats), the number of 
tasks, parking position at a contact or remote stand, and the service time required to carry them out (full 
servicing or minimum servicing). Some activities are affected by precedence constraints imposed due to 
security issues, space requirements or airline policies. The end of the turnaround process is determined by 
the off-block time, when all doors are closed, the bridge is removed, the pushback vehicle is present and 
the aircraft is ready for startup and push back (Fricke & Schultz, 2009).  
A specific type of vehicle performs each operation. According to the task, some vehicles with a given 
capacity must transport some quantity of resources to the aircraft stand (e.g. catering) or collect waste 
from the aircraft (e.g. toilet servicing). Likewise, some vehicles do not transport any resource (e.g. 
pushback). To simplify the model, we selected the main activities of a full servicing turnaround on 
aircraft parking at a contact point. In addition, we have not considered baggage transportation. This task 
has special features in relation to other ground-handling activities (e.g. multiple trips, split servicing, 
multiple depots, etc.) and requires a specific model and solution method. 
At each aircraft, operations must be performed within the defined turnaround time. Hence, a time window 
to begin the service is assigned to each activity, which considers the duration of each task and the 
precedence constraints.  
Scheduling decisions made for one service affect other activities. Tasks belonging to the same aircraft are 
related according to precedence restrictions, as well as to their corresponding time windows. Due to these 
restrictions, the time when an operation begins could reduce the time windows of other activities, and 
consequently the performance of vehicles servicing them.  
Optimising each resource while considering the effect on other operations permits an integration of 
planning decisions and contributes to optimising the overall ground service process. We aim to minimise 
the operation waiting time, i.e. accomplishing each operation as early as possible in relation to its original 
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time window, and minimising the total reduction of time windows. This reduction may affect the number 
of vehicles required to service all aircraft, and therefore we implicitly minimise the number of required 
vehicles. Our second objective is to minimise the total completion time of ground services at each 
aircraft. That is, we want to balance robustness of scheduling each operation with good performance of 
the turnaround, using vehicles efficiently. 
Our first objective aims at performing operations in a set of N aircraft as soon as possible through two 
arguments: minimising the total operation waiting time and the total reduction of the time windows. Let 
the waiting time wi = ti – ai be the difference between the starting time of a given operation at aircraft i 
(ti) and the earliest starting time according to its associated time window (ai). Let Δi denote the time 
window reduction of such operation at aircraft i, such as Δ! = 𝛼! − 𝑎! + (𝛽! − 𝑏!), where αi (βi) is the 
original earliest (latest) start time and ai (bi) is the actual earliest (latest) start time for such operation. An 
aggregate function 𝑓! is defined to describe how early operations are performed by each vehicle 𝑣 ∈ 𝑉: 

𝑓!! = Δ! + 𝑤!             ∀𝑣 ∈ 𝑉
!∈!

 

The first objective function F1 is then defined as: 
𝐹1     min 𝑓!!

!∈!

 

Let l be the last operation on each aircraft and 𝑡!! the start time of such operation at aircraft i. We then 
define the second objective function F2 in order to minimise the completion time in all N aircraft: 

𝐹2   min 𝑡!!

!∈!

 

 
Solution method 
 
We have developed a bi-objective algorithm for solving the ground-handling problem. This method is 
based on a workcentre-based decomposition strategy (Sourirajan & Uzsoy, 2007). Most methods used to 
solve this decomposition derive from the Shifting Bottleneck procedure (Adams et al, 1988).  
Applying this procedure in our particular case, where each sub-problem is a VRPTW, can lead to long 
execution times. Thus, we followed a similar schema but combined two processes to obtain a complete 
solution at each iteration. In the first process, which we call Solving Process (SP), all sub-problems are 
solved one after another given a predefined order. Each time a sub-problem is solved, the time windows 
of the remaining sub-problems are updated to maintain consistency among sub-solutions. The SP is 
embedded in an iterative schema that we call Sequence Iterative Method (SIM), outlined in Figure 2. The 
goal of this second process is to improve the overall solution when dealing with the defined bi-objective 
optimisation problem. We modify sub-problems’ solving sequence at each iteration according to the 
previous solution, and the SP is called again with the new sequence.  
 

 
Figure 2. Flow diagram for the Sequence Iterative Method (SIM) 

 
In SP, we use Constraint Programming (CP) to implement a procedure to find the time windows of each 
operation according to arrival and departure times and imposed precedence constraints between 
operations. Then, a sub-problem is identified for each task (i.e. type of vehicle) and a routing problem is 
solved. 
Each routing problem is solved in two stages. First, we use the well-known I3 construction heuristic 
(Solomon, 1987) to obtain a reasonably good initial solution. The number of vehicles obtained in this step 
is taken as an upper bound of the number of vehicles needed to perform the operations in all aircraft. 
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Imposing this value as the size of the available fleet, a CP-based hybrid method (Guimarans, 2012) is 
applied in the second stage to improve the initial solution by minimising the operation waiting time 𝑓!. In 
this methodology, the modelling and constraint propagation advantages of CP are combined with local 
search methods. Using the concept of operators based on Large Neighbourhood Search (LNS), the local 
search process is embedded in CP. These operators destroy and repair the solution to re-optimise parts of 
the problem. Destroy, in this case, means identifying a set of aircraft to remove from a sequence of visits. 
Repair refers to finding a better way to reinsert these aircraft into the partial solution. In addition, the 
methodology employs Variable Neighbourhood Search (VNS) to guide operators’ selection, a 
metaheuristic often applied to VRPs with interesting results (Guimarans et al, 2011). 
After solving a sub-problem, an explicit process to update the remaining time windows is needed to 
ensure consistency with the rest of sub-problems. Once again, we take advantage of propagation features 
of CP to implement a simple strategy to maintain such consistency. Finally, when all sub-problems are 
solved, the SP is stopped. 
According to Sourirajan & Uzsoy (2007), determining the next machine to be scheduled is one of the 
more important steps in decomposition procedures based on Shifting Bottleneck. The sequence in which 
machines are included in the partial schedule can reduce the re-optimisation process without loss in 
solution quality. For this reason, we have developed the SIM, aiming at improving the solution by 
modifying the order in which sub-problems are solved. 
Following a scalarization schema for multi-objective problems (Jozefowiez et al, 2008), the problem is 
solved with respect to the first objective F1, and the value of the second objective F2 is calculated from 
the obtained solution. At each round, sub-problems’ solving sequence is modified to find a solution in the 
Pareto set to cover it in the best possible way. Regardless of the type of aircraft, the ground-handling 
service always finishes by pushing away the aircraft from its parking position (pushback). We used this 
information to create an initial sequence to obtain a lower bound of F2.  
Let S be the ordered set of sub-problems where each sub-problem corresponds to each type of vehicle (i.e. 
task) involved, |S|=|V|. The order in S describes the sequence in which sub-problems are solved; sl is the 
sub-problem corresponding to the last operation; B is the set of sub-problems to solve before sl such that 
𝐵 ⊆ 𝑆\{𝑠!}; and R represents the remainder of sub-problems such that 𝑅 = 𝑆 − 𝑠! − 𝐵.  
In the first step of the SIM, an initial sequence in S is created such that the sl is the first sub-problem to 
solve. When a sub-problem is solved first, corresponding operations are scheduled within their original 
time windows. If this sub-problem is the pushback, a lower bound of F2 is obtained. On the other hand, 
this reduces the original time windows of other tasks on the same aircraft, i.e. the time windows of the 
elements in R. Thus, a worse value of F1 is obtained. 
At first, the elements in R are sorted according to the actual order in which different tasks are carried out 
at each aircraft (see Figure 1). In principle, when solving the last operation first, the best value of F2 is 
obtained regardless the order of the elements in R. However, solutions found should be as close as 
possible to the Pareto optimal set, i.e. a solution with a lower bound of F2 with the minimum value of F1. 
Therefore, after obtaining a solution with the initial sequence by means of SP, sub-problems in R are 
ordered by their 𝑓! values. Then, we repeat the process to obtain a better sequence of R.  
In a second step, SIM aims at improving the value of F1, planning the remainder of sub-problems before 
the last operation. At each round, the sub-problem with the highest value of 𝑓! in R is selected for 
inclusion in B, and solved first. Adding sub-problems to B, i.e. prioritising other operations with respect 
to sl, usually leads to a decreasing F1. Similar to the first step, the chosen sub-problem is scheduled 
within its original time windows, which leads to a lower bound of its 𝑓!. After scheduling all operations, 
we sort B and R in decreasing order of 𝑓! and use SP to solve the new sequence. We repeat the process 
until no further improvements on F1 are obtained. Thus, an improvement of F1 is reached while a new 
value of F2 is found. We then select the next sub-problem to be included in B. The process is repeated 
until all operations are scheduled before sl, that is, 𝐵 = 𝑆\{𝑠!}. 
 
Computational experiments 
 
The methods described in this paper have been implemented in Java and linked to the CP platform 
ECLiPSe 6.0. All tests were run on a server with an Intel Xeon processor at 2.66GHz and 16GB RAM. 
To the best of our knowledge, no benchmark instances exist for the ground-handling problem. We 
generated a set of scenarios based on real data provided by PMI to validate the proposed approach. This 
data is subject to a strict confidentiality agreement and therefore cannot be disclosed. We used a flight 
schedule corresponding to a summer business day and considered all aircraft performed a turnaround. 
This dataset contains scheduled arrival and departure times, type of aircraft, and assigned parking 



positions. We assume constant speed to calculate vehicle travel times between these positions. In our 
instances, we modelled three types of aircraft with different sizes (types I, II and III, in increasing order).  
For each operation and using manufacturer specifications for each aircraft type, we defined the duration, 
precedence restrictions and the type of vehicle used. Three sets of instances C1, C2 and C3, were 
generated, modifying the precedence constraints to test the algorithm. The flight schedule was divided 
into three eight-hour shifts scheduled separately J1, J2 and J3, servicing 42, 64 and 83 aircraft, 
respectively. We combined these shifts with the different sets to obtain 9 instances to test our approach. 
Table 1 provides a summary of results obtained with our methodology for the generated instances. 
 

Sol. 
C1J1 C1J2 C1J3 C2J1 C2J2 C2J3 C3J1 C3J2 C3J3 

F1 F2 F1 F2 F1 F2 F1 F2 F1 F2 F1 F2 F1 F2 F1 F2 F1 F2 
1 2383 1594 3389 2362 4717 3009 2596 1589 3770 2331 4867 2994 2798 1584 3688 2360 4848 3029 

2 2165 1613 4064 2346 4281 3057 2369 1607 3309 2357 4524 3053 2748 1600 4271 2345 4715 3068 

3 1980 1621 3509 2403 4608 3067 2142 1629 3002 2381 4096 3083 2360 1635 3504 2368 4098 3110 

4 2425 1619 2619 2393 3806 3112 2364 1610 3438 2346 4394 3104 2640 1613 3036 2407 4640 3087 

5 1850 1655 2464 2414 3282 3130 1864 1670 2623 2422 3590 3109 2086 1659 3832 2403 3741 3161 

6 2154 1646 3162 2399 4121 3100 2096 1654 2869 2385 3940 3153 2476 1639 2809 2455 4521 3133 

7 1709 1695 2101 2466 3169 3185 1762 1694 2349 2464 3360 3177 1983 1670 3548 2447 3521 3181 

8 1998 1681 2904 2464 3896 3173 1784 1680 2756 2444 3046 3203 2275 1662 2543 2478 4271 3186 

9 1565 1715 1833 2490 2818 3207 1671 1707 2157 2488 3428 3215 1764 1714 2360 2517 3264 3218 

10 1816 1687 2754 2486 3547 3197 1709 1699 2586 2486 2790 3262 2170 1692 3067 2514 3964 3200 

11 1510 1736 1756 2508 2622 3264 1513 1712 1924 2513 3279 3286 1729 1734 2206 2539 3108 3280 

12 1792 1714 2499 2509 3301 3252 1676 1710 - - - - 2054 1711 2863 2522 3690 3265 

Table 1. Solutions obtained for PMI instances using SIM. Non-dominated solutions are marked in bold. 
 
Vehicle utilisation is an important aspect of how scheduling decisions of a resource affect the other ones. 
We observed an increase in the vehicles needed to perform other operations whenever the pushback was 
solved first. Obtaining lower values of F2 implies a time window reduction on other operations at the 
same aircraft, and consequently an increment of employed vehicles. For instance, in C1J1 baggage 
operations needed 19 vehicles when pushback was solved first (Sol. 1), while it uses 16 when it is solved 
last (Sol. 11 and 12). This might be an interesting criterion to select a solution or prioritise an operation 
according to the particular situation of a vehicle type, e.g. temporary unavailability or cost-based criteria. 
In addition, we evaluated the performance of the proposed CP-based methodology to solve each task sub-
problem. We compared our results to two modified versions of SIM: a first one using only the I3 
heuristic; a second one substituting our approach by another state-of-the-art approach for the VRPTW 
(Woch & Lebkowski 2009). In the first case, our hybrid methodology is clearly able to improve the 
obtained solutions, although at a higher computational cost (Figure 3 left). In the second case, we found 
results were both comparable in quality and computational time (Figure 3 right). 
 

 
Figure 3. Hybrid CP-based methodology vs. using only the I3 heuristic (left) or another state-of-the-art 

approach for the VRPTW (right) 
 
Conclusions 
 
In the present paper, we have presented a first approach for scheduling ground-handling vehicles at an 
airport. Different operations and types of vehicles have been considered to tackle this problem from a 
holistic perspective. We have modelled ground-handling services as a bi-objective optimisation problem, 
aiming to integrate the scheduling decisions about each resource and to contribute to the optimisation of 
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the overall process. This goal is defined through two objectives: (i) minimising the operations waiting 
time and the total reduction of the time windows, and (ii) minimising the total completion time of the 
turnarounds.   
The problem has been decomposed to allow the model and the solution method to be simplified without 
losing the global approach of the proposal. Decisions are propagated between different sub-problems to 
ensure that local solutions can be integrated to obtain a feasible global solution. A new method called 
Sequence Iterative Method has been developed to improve the global solution when dealing with the bi-
objective optimisation problem.  
Our approach has been tested using real data from Palma de Mallorca airport and specifications from 
aircraft manufacturers. Results show that different solutions representing a trade-off between objectives 
were found by modifying the order in which operations are scheduled. Moreover, the number of vehicles 
needed to perform operations can change according to this order. This might be an important criterion to 
select between two solutions with similar values of the objective functions. 
Different aspects remain for further development of the presented work. The inclusion of baggage 
transportation or passenger transfer to remote stands will further enrich this study. Furthermore, we have 
assumed a homogeneous fleet of each type of vehicle. Considering a heterogeneous fleet and including 
this constraint in the model is another topic for future research. 
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