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ABSTRACT 
The Beer Game has a typical supply chain structure that 
permits exploring a variety of supply management 
concepts. Many modelling methods have been used for 
supply chain analysis and so they can be applied to the 
Beer Game specific case study. Among them, discrete-
event systems simulation has deserved special attention 
due to its suitability for modelling dynamic systems 
with a high degree of detailed elaboration and stochastic 
factors. For this reason, several discrete-event 
simulation oriented models have been elaborated to 
tackle the Beer Game and, by extension, multi-echelon 
supply chains. In the present paper, four of these models 
are described. Some of their applicability characteristics 
are also outlined, so a further discussion of their 
suitability according to simulation purposes can be 
done. Conclusions extracted from this analysis are 
presented in this work, aiming to help on choosing the 
most suitable model according to end user’s preferences 
and purposes. 

 
Keywords: supply chain simulation, Beer Game, 
Coloured Petri Nets, constraint programming, models 
analysis, uncertain environment. 

 
1. INTRODUCTION 
The Beer Game has a typical supply chain structure 
when it is represented as a serially connected inventory 
management systems chain. The Beer Game application 
enables to explore a variety of simple and advanced 
supply management concepts, taking into consideration 
environment uncertainty.  

There are a variety of methods which address 
modelling and analyzing the supply chain. Within them, 
simulation has become an important tool for analysis 
and improvement of an entire supply chain operation. 
Different modelling methods that can be used for 
supply chain analysis may be classified as follows: 

 
1. Analytical modelling: algebraic methods, 

automatic control theory, Petri-Nets, queuing 
theory, Markov chains, etc. 

2. Algorithmic modelling: 
(a) Continuous Systems Simulation: 

differential equations, difference 
equations, etc. 

(b) Discrete-Event Systems Simulation: event 
or process oriented simulation, etc. 

 
Analytical models have their place at a tactical 

level in the design of supply chains. Analytical 
techniques are able to solve batch sizing and job 
sequencing problems, yet fail to throw much light on 
the dynamic behaviour of the supply chain as a whole 
(Riddals, Bennett and Tipi 2000). Analytical techniques 
are useful in providing solutions to local tactical 
problems. Nevertheless, the impact of these solutions on 
the global behaviour of the whole supply chain can only 
be assessed using dynamic simulation. In addition, the 
computational burden associated to such techniques is 
to be considered an important drawback. 

Ishii, Takahashi and Muramatsu (1988) developed 
a deterministic model for determining the base stock 
levels and lead times associated with the lowest cost 
solution for a supply chain. The stock levels and lead 
times are determined in such a way as to prevent 
stockout and to minimize the amount of obsolete 
inventory at each stock point. In this model, they need 
to decide upon two linearly varying demand rates in 
order to carry out the computation. 

Williams (1981) presents seven heuristic 
algorithms for scheduling production and distribution 
operations in an assembly supply chain. The objective 
of each heuristic is to determine a minimum-cost 
production and/or product distribution schedule that 
satisfies the final product demand. However, they fail to 
illuminate the dynamics of the system. 

Cohen and Lee (1989) present a deterministic, 
mixed integer, non-linear mathematical programming 
cost-based model. They use an economic order quantity 
technique to maximize the total after-tax profit for the 
manufacturing facilities and distribution centres, but 
dynamics are not included. 

Modelling supply chains using continuous system 
simulation holds great appeal for control theorists. This 
is because many of the influential characteristics of the 
problem can be succinctly expressed in a differential 
equation form (Riddals, Bennett and Tipi 2000). 
Continuous systems simulation has the advantage of 
being a conduit into the frequency domain, which offers 
a framework particularly suited for the study of systems 
in which oscillations are a salient attribute, e.g. analysis 



of factors having impact on a seasonal, or other demand 
fluctuations, amplification as they are passed along the 
chain. Since differential equation produce “smooth” 
outputs, they are not suited to modelling of all supply 
chains. The system must be considered at an aggregated 
level, in which individual entities in the system 
(products) are not considered. Rather, they are 
aggregated into levels and flow rates. Consequently, 
these methods are not suited for production processes in 
which each individual entity has an impact on the 
fundamental state of the system. For the same reasons, 
continuous systems simulation cannot solve lot sizing 
and job sequencing problems. 

Forrester (1961) developed what he called 
Industrial Dynamics, which he later extended and 
renamed System Dynamics. He developed a nonlinear 
model of a supply chain using first-order differential 
equations. He analysed the demand fluctuation 
amplification as it proceed down the multi-echelon 
supply chain, using continuous time models. However, 
no sensitivity and cost-based analysis have been carried 
out on these models, which are solely concerned with 
the dynamics. Many discrete-event simulation packages 
available today provide a more advanced simulation 
capability. Armbuster, Marthaler and Ringhofer (2002) 
modelled high volume production flows using nonlinear 
hyperbolic partial differential equations, with Little’s 
law explicitly built into the formulation. By using the 
developed models, they are able to analyse multiple 
products, dispatch polices and control actions. 

The emergence of discrete-event systems 
simulation (DES) was engendered by the deficiencies of 
differential equation approaches to the solution of even 
simple man-made problems (Riddals, Bennett and Tipi 
2000). Consider, as an example, governing the 
behaviour of a series of queues at a supermarket. The 
modelling of phenomena such as queue swapping 
(when customers jump to shorter queues) or variable 
service speed (faster when there are more customers) 
would make impossible the application of differential 
equations, as well as any other theoretical approach. 
However, such phenomena can easily be incorporated 
into a DES model.  

DES has the following two characteristics: (1) it 
represents individual events, e.g., the arrival of an 
individual customer order; (2) it incorporates 
uncertainties, e.g., customer orders arrive at random 
points in time, machines break down at random points 
of time, etc. (Kleijnen 2005). Most systems dynamics 
models are non-stochastic, but their behaviour often 
becomes incomprehensible due to nonlinear feedback 
loops. Most econometric models are also based on the 
deterministic, nonlinear differential equations. DES 
provides more accurate simulation capabilities against 
above described techniques and so it has been 
considered an important method in supply chain 
modelling. Banks, Buckley and Jain (2002) described a 
lot of DES based studies, like commercial packages 
developed by IBM for supply chain management 
simulation for both operational and strategic planning 

levels. For more details on DES one could refer to the 
many textbooks, e.g., Law and Kelton (2000), Banks, 
Carson and Nelson (2004), Ho and Cao (1991), etc. 

Different described methods of mathematical 
modelling are suitable for different problems solving 
and all have their place in the design and management 
of supply chains. However, the analysis of advantages 
and disadvantages of the proposed methods specifies 
DES as the more appropriate method for modelling 
dynamic systems with a high degree of detailed 
elaboration and stochastic factors, such as supply 
chains. For this reason, only models included in the 
DES category have been considered in this paper. 

The remainder of this paper is structured as 
follows: next section presents a rough description of the 
Beer Game and introduces the studied models. Section 
3 presents a discussion about models suitability 
according to end user purposes. Finally, some 
conclusions are outlined in the last section. 

 
2. THE BEER GAME 
The Beer Game is a role-playing simulation developed 
at Massachusetts Institute of Technology in the 1960’s 
to clarify supply chains’ behaviour (Jarmain 1963). The 
Beer Game model considers a simplified beer supply 
chain, consisting of a single retailer, a single wholesaler 
which supplies the retailer, a single distributor which 
supplies the wholesaler, and a single factory with 
unlimited raw materials which makes (brews) the beer 
and supplies the distributor (Figure 1). 
 

 
Figure 1: Beer Game’s Supply Chain Structure 

 
Each component has unlimited storage capacity 

and the manufacturer has also unlimited raw materials. 
There are a fixed supply lead time and order delay time 
between each participant. 

Every week, each component in the supply chain 
tries to meet the demand of the downstream participant. 
Any orders which cannot be fulfilled are recorded as 
backorders. These unmet orders are to be satisfied as 
soon as possible, since no orders can be ignored. At 
each period, each member orders some amount from its 
upstream supplier. It takes one week for this order to 
arrive at the supplier. Once the order arrives, the 
supplier attempts to fill it with its available inventory 
and it takes an additional delay time, commonly set to 
two weeks, before goods arrive to the customer who 
placed the order. Usually, each supply chain component 
has no knowledge of the external demand or the orders 
and inventory of the other members. Nevertheless, in 
some cases, all components may share information in 



order to optimise supply chain’s behaviour (Simchi-
Levi, Kaminsky, and Simch-Levi 2003). 

At each period, each component owns the 
inventory at that facility and goods in transit to the 
downstream participant. Each location is charged $1 per 
item that it owns as inventory holding cost. In addition, 
any backordered item is charged $2 per week. The 
external demand is uncertain and the goal of the retailer, 
wholesaler, distributor, and factory, is to minimise total 
cost, either individually, or for the whole system. 

 
2.1. Computerised Beer Game 
The Computerised Beer Game is a Windows based 
program written in C++, developed by Kaminsky and 
Simchi-Levi (1998), providing an interactive tool for 
teaching some supply chain behaviour characteristics. 

The Computerised Beer Game follows the original 
rules of the Beer Game, with few exceptions aimed to 
enhance teaching possibilities. The end user can only 
take one role, usually the distributor, while the 
computer manages all remaining components according 
to the chosen policies (Figure 2). These characteristic 
allows the player focusing on single managerial 
decisions rather than understanding the whole chain 
behaviour, for which few information is known. 
Furthermore, demand in the Computerised Beer Game 
may be chosen to be either completely deterministic, as 
in the original game description, or random, following a 
statistical distribution. 
 

 
Figure 2: User Interface of the Computerised Beer 
Game 
 

However, main changes with respect to the original 
beer game are the options to play with global 
information, centralized information and/or shortened 
lead time. When playing the global information 
scenario, all information is always known, including 
customer demand and inventories. In the centralized 
information version, the player can only take the role of 
the manufacturer. Because the system is centralized, 
only this component can place orders, while goods are 
moved downstream as quickly as possible. As in the 
previous option, all information is always available. 
This option permits to compare centralized and 
decentralized policies if costs are correctly adjusted, 
since no backorders are allowed in the decentralized 
scenario. Finally, the short lead time version allows 
reducing the delivery delay from two weeks to one. 

The Computerised Beer Game is mainly aimed to 
education and training on supply chain management. 
Although results obtained are equivalent to other 
models and the interactive role may be switched off, so 
all participants are controlled by the computer, its 
graphical interface significantly slows down its 
performance. Therefore, it might not be a good option if 
the simulation is aimed to analytical purposes, for 
which other models may provide the same results faster. 

 
2.2. Coloured Petri Nets Model 
Coloured Petri Nets (CPN) formalism has proven to be 
a successful tool for modelling the characteristics for 
any type of discrete event oriented system. CPN shows 
several advantages such as the conciseness of 
embodying the static structure and the dynamics, the 
availability of the mathematical analysis techniques as 
well as its graphical nature (Jensen 1997).  

The Beer Game has been modelled using timed 
Hierarchical Coloured Petri Nets (Jensen 1997) 
following the general scheme presented in Panic, 
Vujosevic and Makajic-Nikolic (2006). The top level of 
the model is the whole supply chain represented in the 
Beer Game, including a customer and the four described 
agents: retailer, wholesaler, distributor and 
manufacturer (Figure 5). 

The customer is presented by a place, whose initial 
marking specifies its demand in time. Retailer, 
wholesaler and distributor are modeled by a Supplier 
sub-model (Figure 3). Finally, the manufacturer is 
represented by a Manufacturer sub-model (Figure 4). 
Furthermore, this hierarchical model allows including 
additional suppliers between the customer and the 
manufacturer, each of them modelled by an instance of 
the Supplier sub-model. This is possible due to in the 
Beer Game it is assumed all participants make decisions 
according to the same rules. Thus, all agents included in 
the supply chain are equal from a modelling 
perspective. 

Although the CPN model may be extended by 
adding additional parameters, only orders, backorders 
and deliveries have been considered. These variables 
are enough to trace system’s behaviour in order to show 
and analyze the bullwhip effect. 

An instance of the sub-model Supplier has been 
used to represent the retailer, wholesaler and distributor. 
According to the order received in place Demand 
(downstream), the current inventory at place 
Stock and backordered items in place Backorders, 
a supplier makes its own order. This process is 
modelled through the instantaneous transition Place 
order and the function order(b,k,n), where 
different policies may be used. These policies may be 
implemented in a deterministic way or kept open to 
allow interaction with end users, according to 
simulation goals. Transition Fulfil demand is used 
to model requested amount’s delivery. If the inventory 
stores enough goods, the complete demand, including 
last received order and backordered items, is satisfied 
and the remaining (function rest(n,b)) is kept in the 



stock. Otherwise, all available goods are delivered and 
the difference is backordered (rest(b,n)). The 
duration of transition Fulfil demand is @+2, since 
the Beer Game rules establish that deliveries last 2 
weeks. The associated guard function ensures this 
transition is only fired when an order exists, or there are 
backorders to satisfy, and there are goods in stock. 

The Manufacturer sub-model is similar to the 
Supplier one. In fact, the manufacturer acts as other 
suppliers, but deciding what amount to produce in the 
following period instead of placing an order to its 
upstream agent. Again, this decision is made according 
to the current demand, backorders and inventory. The 
associated transition is Manufacture, which has 
associated a duration of 2 weeks (@+2) as MIT Beer 
Game rules state. 

 
 

 
Figure 3: Sub-Model Supplier 

 
 

 
Figure 4: Sub-Model Manufacturer 

 
 

 
Figure 5: Complete Beer Game CPN Model 

 



This model may be implemented in several 
platforms supporting CPN simulation, such as CPN 
Tools (2010), or using any programming language 
(Guasch, Piera, Casanovas and Figueras 2002). 
According to implementation details, the model is likely 
to be used with different purposes. As an example, all 
policies may be implemented so all participants behave 
in a deterministic way. On the other hand, function 
order may be left in blank for one, some, or all 
participants, allowing end users interaction. Thus, an 
interactive CPN model is implemented, especially 
suitable for educational and training purposes, 
comparable to the original Beer Game. Taking into 
account extra variables may be included in the model, 
this CPN model is more likely to be extended according 
to training preferences and dynamics to be studied. 

 
2.3. Constraint Programming Model 
Constraint Programming (CP) is a powerful paradigm 
for representing and solving a wide range of 
combinatorial problems. Problems are expressed in 
terms of three entities: variables, their corresponding 
domains and constraints relating them. The problems 
can then be solved using complete techniques such as 
depth-first search for satisfaction and branch and bound 
for optimization, or even tailored search methods for 
specific problems. Rossi et al. (2006) presents a 
complete overview of CP modelling techniques, 
algorithms, tools and applications. 

The CP model may be seen as a specific 
implementation of the CPN model described in the 
previous section. Constraints among variables are 
defined as a set of rules, relating each component’s 
variables with its upstream/downstream participant and 
their values at each period. 

Four sets of variables have been defined, one for 
each component i=[1..4] (1: retailer, 2: wholesaler, 3: 
distributor, 4: manufacturer) and the final customer 
being i=0. Periods are denoted by the variable 
t=[1..tmax], where tmax is usually set to 50 weeks. Thus, 
for component i at period t, variables defined are: INVit 
is the current inventory, DEL1it and DEL2it are the 
goods in transit, BOit is the number of backordered 
items, DEMit is the demand to be satisfied, ORDit is the 
order placed by the component, SHIPit is the amount 
shipped by the component in the current period and 
COSTit is the associated cost to this turn. Variables are 
related according to the following rules: 

 
DEM1t=ORD0 t     (1) 
DEMit=ORDi-1 t-1     (2) 

 
INVi t-1 + DEL1i t-1 • DEMit + BOi t-1 → (3) 

INVit=INVi t-1+DEL1i t-1–SHIPit 
SHIPit=DEMit+BOi t-1 
BOit=0 
 

INVi t-1 + DEL1i t-1 < DEMit + BOi t-1 → (4) 
INVit=0 
SHIPit=INVi t-1+DEL1i t-1 
BOit=BOi t-1+DEMit-SHIPit 

 
DEL1it=DEL2i t-1    (5) 
DEL2it=SHIPi+1 t    (6) 
 
COSTit=1*(INVit+DEL1it+DEL2it)+2*BOit (7) 
 

The total cost for component i for the whole 
simulation period is then calculated trivially: 

 

∑
=

=
max

1

t

t
iti COSTTCOST     (8) 

 
The value of ORDit in (2) is determined according 

to the chosen policy. Several policies may be 
implemented, usually depending on inventory and 
demand parameters. 

Rule (3) is only applied to update parameters when 
there is enough stock to fulfil the current demand. On 
the other hand, rule (4) is used whenever the component 
i is not able to meet demand requirements. Constraints 
(5) and (6) update transportation variables at each 
period. 

Departing from a given initial state and a list of 
customer’s demand along periods, CP propagation rules 
determine immediately all remaining variables. 
Therefore, the model is able to provide instantaneously 
results corresponding to a complete simulation. 
Moreover, since propagation rules are not 
unidirectional, the model may provide a mechanism to 
infer other participants’ policies, inventory bounds and 
even final customer’s demand. With this goal, initial 
information concerning the evolution of own variables 
should be provided, instead of final customer’s demand. 
So, the model may reconstruct demand patterns from 
other participants, even for the final customer, and 
provide a good mechanism for analysis and a first step 
to get a reliable forecasting tool. 

The CP model, implemented using the CP platform 
ECLiPSe (Apt and Wallace 2007), is instantaneous for 
common simulation periods. Since propagation is very 
fast, the model is especially suitable for analysis 
purposes. Furthermore, it is likely to be parallelized, so 
different scenarios may be defined and run 
simultaneously to get different data. Nevertheless, the 
model provides a low level of interaction, so it might 
not be a good option for decision making training. 
 
2.4. Arena 
Simulation techniques are used when analytical solving 
is impossible. Most of all analytical approaches do not 
succeed analysing complex, dynamic systems like 
supply chains. For this reason, the Beer Game has been 
modelled using DES software Arena by Rockwell 
Automation (2010). Arena software is effective when 
analysing complex, medium to large-scale projects, 
involving highly sensitive changes related to supply 
chain, manufacturing, processes, logistics, distribution, 
warehousing and service systems. Arena proposes an 
event-oriented modelling approach and consists of 



"libraries" of modelling objects that make it 
significantly easier and faster to develop models. Arena 
exploits two Windows technologies that are designed to 
enhance the integration of desktop applications. The 
first, ActiveX Automation allows applications to control 
each other and themselves via a programming interface. 
The second technology addresses the programming 
interface issues to a Visual Basic programming 
environment. These two technologies work together to 
allow Arena integrating with other programs that 
support ActiveX Automation, e.g., Excel, AutoCAD, or 
Visio. 

The Beer Game supply chain and its inventory 
control systems have been implemented combining 
Arena software and Visual Basic for Applications 
(VBA). The model logic is represented comprehensibly 
in the Arena flowchart-style environment, while the 
more complex calculation algorithms are programmed 
in VBA. The traditional four-stage Beer Game structure 
has been modelled in combination with two information 
sharing strategies (centralised and decentralised) and 
two inventory control policies (s-S and Stock-To-
Demand).  

In accordance with specific features of the Beer 
Game, the proper event processing schedule 
implementation in Arena environment is shown in 
Figure 6. If several events are scheduled to occur at a 
certain supply chain stage at the same simulation time, 
there is a fixed order in which the events should be 
processed: 

 
1. order or backorder arrival from upstream stage 

(stock replenishment); 
2. fulfilling of backorders (only if an order has 

arrived); 
3. new demand fulfilling. 

 
 
 

 
Figure 6: Submodel of Order Shipment to Wholesaler 

 

As Arena’s simulation engine do not always 
process the events in this order (Kelton and Sadowski 
2002), a procedure has been developed to guarantee that 
events are processed in the mentioned sequence. Wait 
and Signal blocks form implementation’s basis of 
this procedure in Arena. 

Various experiments may be performed with the 
created model and achieved results may be analysed by 
the Output Analyzer. This is a component of Arena that 
provides an easy-to-use interface, simplifying data 
analysis and allowing viewing and analysing simulation 
data quickly and easily. 

The Arena model is suitable for research purposes, 
since it incorporates both dynamic and stochastic nature 
of the supply chain operations and the simulation 
execution speed without animation is quite fast. The 
analysis of system’s behaviour under specified 
conditions may be easily performed and allows 
foreseeing thousands of situations which could result 
from supply chain operations. Each of the supply chain 
stages is modelled as a separate module and it is 
possible to change both supply chain structure (e.g., add 
or remove a stage) and supply chain management 
concepts (e.g., centralized or decentralized information 
sharing strategy). 

However the model is not suited for training and 
education due to low level of interaction with the end 
user. To modify the model parameters, end user should 
have previous experience on working with Arena 
software. 

 
2.5. Excel 
An alternative to DES specific software is developing a 
supply chain simulator implemented in a general-
purpose high-level programming language, e.g., C++, 
Java or VBA. Programming languages are mainly used 
for simulation in order to avoid additional expenses of 
commercial software purchasing and maintenance. 

The user interface of the Beer Game supply chain 
model is developed by means of Microsoft Excel 
spreadsheets (Figure 7), which is widely applied and 
easy accessible software. The programming logic is 
implemented using VBA (Ternovoy 2004). 

 

 
Figure 7: Supply Cain Model User Interface 



Supply chain’s control variables’ values, as well as 
initial data, are defined by the user using a MS Excel 
interface, and then the simulator is run for the specified 
number of periods by means of a VBA procedure 
(Figure 8).  
 

 
Figure 8: Simulation Parameters 

 
The simulation procedure Next_n runs the model 

in accordance with defined user settings. First, constants 
and variables are defined and information is read from 
the data files. Then, the simulation of the processes 
scheduled is performed and repeated four times for all 
supply chain’s stages, i.e. once for each component. 
Events management is performed in accordance with 
the Beer Game structure. Eventually, simulation results 
appear in separate spreadsheets showing different types 
of charts, histograms and tables. 

The functional possibilities of the Excel simulation 
model are quite similar to the Arena model, but since 
the special simulation software is not needed and 
experiments are easily configured, it can be used for 
educational and training purposes. However, the speed 
of executing a simulation run in Excel is quite slow and 
the number of simulated periods is restricted, so 
research tasks are difficult by using this model. 
 
3. MODELS SUITABILITY 
Although all described models yield the same results, 
choosing one or another relies on simulation’s goals. 
Each model’s characteristics make it more suitable 
according to pursued purposes: research or 
training/education. However, all models may be used to 
simulate the Beer Game regardless of their 
characteristics, being only a matter of efficiency which 
one is best suited to a specific simulation goal. 

 
Table 1: Models’ Characteristics Summary 

Model Interactive Scalable Speed Infer 
Policies 

Comput. X    
CPN X X   
CP  X X X 

Arena  X X  
Excel X X   

Table 1 summarizes characteristics for all 
described models in the previous section. Even though 
different parameters might be defined, only those 
relevant for purposes considered in this paper have been 
included, i.e. interactivity, scalability, execution speed 
and the capability of inferring demand patterns from a 
data set. Interactivity is a characteristic of 
Computerised, CPN and Excel models. In all of them, 
different parameters can be chosen or modified on 
runtime, or the model is likely to be modified easily to 
include some level of interaction with the end user. On 
the other hand, the CP model is completely 
deterministic and results are only derived from the 
initial data and set-up. Arena model requires some 
particular skills in order to permit some interaction with 
the end user. Models’ modularity determines their 
capability of being scaled to represent larger systems. In 
this sense, Arena, Excel, CPN and CP models are 
clearly modular, since different components are defined 
separately and may be concatenated with little changes. 
The computerised Beer Game is proprietary software 
and so the system it represents cannot be modified. 
According to the simulation speed, CP and Arena 
models are clearly faster than other models. This 
characteristic makes them especially efficient when 
running a set of simulations with different parameters, 
as demanded for analysis purposes. Finally, only the CP 
model allows performing simulations with different 
initial data than the final customer demand and 
participants’ policies. This characteristic provides a 
mechanism especially important from a forecasting 
perspective. As mentioned in the CP model description, 
it also permits reconstructing demand patterns and 
inferring other participants’ policies and inventory 
bounds. Therefore, this characteristic might be an 
interesting tool for analysis, either for research or 
management. 

 
Table 2: Models’ Suitability According to Simulation 
Purposes 

Research 
Model Training / 

Education Analysis Strategies 
develop. 

Computerised X   
CPN X X  
CP  X X 

Arena  X  
Excel X   
 
All parameters related in Table 1 characterize 

models’ performance and adaptability, and help on 
choosing one or another depending on simulation 
purposes. For example, if the simulation is training or 
education oriented, requested characteristics mainly 
include a high interactivity, in order to permit the end 
user making his own decisions and introducing them 
into the system. These decisions could be programmed 
in advance for all models, so not interactivity is allowed 
at all, but it would reduce the teaching or training 
experience to a single analysis after the simulation ends. 



For this reason, interactive models among described 
ones, i.e. Computerised Beer Game, CPN and Excel, are 
considered to be best suited for management training or 
education. On the other hand, research tasks demand 
another kind of characteristics, especially related to 
execution speed. Usually, separate sets of simulations 
are run combining different demand patterns and 
policies, in order to analyse system’s behaviour. With 
this goal in mind, it is more appropriate to choose a 
model which allows running a complete simulation in a 
low time, such as CP or Arena models. Although the 
execution time depends on the implementation platform 
and computer’s characteristics, both models have 
demonstrated being fast enough for research tasks. 
Another desirable model characteristic is scalability, 
since it allows modifying system’s dimensions with 
analytical purposes. In this sense, both CPN and CP 
models permit changing the number of components 
easily while ensuring a complete integration of all 
variables. Finally, the capability of the CP model to 
infer other components’ policies, demand patterns and 
inventory bounds, combined with its low execution 
time, make it especially suitable for strategies and 
policies development, as well as a first step for 
developing forecasting tools. Table 2 presents which 
models best fulfil different simulation goals. 
Nevertheless, conclusions presented in Table 2 are to be 
considered more a guide than a rule, since all models 
may be used for all selected purposes according to end 
user preferences, as mentioned.  

 
4. CONCLUSIONS 
The Beer Game has a sequential supply chain structure 
that permits exploring many supply management 
concepts. In the present paper, four discrete-event 
simulation models representing the Beer Game have 
been described. Some of their characteristics have also 
been outlined and related to their suitability according 
to simulation purposes. This analysis may form a 
helpful basis for choosing the most suitable model 
according to end user’s preferences and purposes. 

The Computerised Beer Game is mainly aimed to 
education and supply chain management training. It 
allows a high level of interaction with the end user, 
although the interactive role may also be switched off 
aiming to increase the simulation speed. However, its 
graphical interface significantly slows down model’s 
performance, so it might not be the best option if the 
simulation has analysis purposes.  

CPN provide a mechanism to specify a conceptual 
model, likely to be implemented either on CPN 
simulation platforms or by using high-level 
programming languages. Thus, it possesses a set of 
characteristics that permit using it for educational and 
training purposes, as well as for analysis and research 
tasks. 

The CP model may be considered as an 
implementation of the proposed CPN model. Since 
constraint propagation is very fast, it provides almost 
instantaneous results for common simulation periods. 

This way, thousands of different scenarios could be 
simulated sequentially, or even in a parallelized 
environment, getting results in reasonable times. On the 
other hand, there is a lack of interactivity with the end 
user that makes it difficult to be used with real-time 
decision making training. 

The Arena model incorporates advantages from 
using specific simulation software, such as the 
capability of including both dynamic and stochastic 
nature of supply chains operations. Since it is able to 
provide results in a quite reasonable time, this model is 
suitable to be used for research purposes. However, 
using Arena on developing and modifying supply chain 
models requires particular skills on working with 
simulation software environment. 

Using Excel for developing a simulation model 
becomes an alternative to using Arena. Both models 
possibilities are similar, having the advantage that no 
special simulation software is needed. Thus, Excel 
model may also be used for educational and training 
purposes. However, its simulation speed is quite low 
compared to Arena, so research tasks are limited when 
using this model. 

Described models’ main purposes are clearly 
determined by parameters analysed in section 3, among 
others. As an example, for training simulations is highly 
desirable to run a model which allows interacting with 
the end user. Thus, he can check almost instantly 
consequences derived from his decisions. On the 
contrary, research tasks often require a high execution 
speed, so different scenarios may be simulated and 
analysed in low times. Scalability is another desirable 
characteristic, even though it is not critical due to Beer 
Game models simplicity. It should be remarked a 
characteristic that only the CP model possesses: inverse 
deduction and reconstruction of policies and inventory 
bounds. CP paradigm allows this characteristic, since 
constraints are not unidirectional, unlike rules included 
in other models. 

Finally, it should be remarked that all four 
presented models are simulation oriented. Simulation 
models are the so-called input-output models, i.e., they 
yield the output of the system for a given input. 
Therefore, simulation models are “run” rather than 
“solved” (Hurrion 1986). For this reason, no one of 
presented models may be used for optimization 
purposes without significant changes. In any case, 
system may be studied and optimised, but depending 
entirely on the end user. Among models described in 
the present paper, only the CP model is suitable to be 
easily modified to include an objective function in order 
to be optimised. However, supply chains nature would 
induce to explore a huge search space, characteristic of 
NP problems. Tackling this kind of problem would 
require using complex algorithms, i.e. heuristics and 
metaheuristics, combined with simulation and other 
operational research techniques. 
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