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ABSTRACT 
Routing vehicles to serve customers is a problem that 
naturally arises in many distribution systems. Moreover, 
fleet management requires fast algorithms able to cope 
with continuously changing needs. Many efforts have 
been addressed to tackle different vehicle routing 
problem’s variants. Among them, the pick up and 
delivery problem with time windows (PDTW) has 
received far less attention despite its relevance from 
practical and theoretical perspectives. The present paper 
provides a hybrid approach to the PDTW based on 
Constraint Programming paradigm and local search. 
Indeed, the proposed algorithm includes some 
performance improvements to enhance its efficiency. 
Thus, this hybrid approach may provide a solution to 
problems otherwise intractable in a reasonable 
computational time, as shown in the presented results. 
Due to these characteristics, the proposed algorithm 
may be an efficient tool in decision making support, as 
well as a mechanism able to provide an initial solution 
for subsequent optimization techniques. 
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1. INTRODUCTION 
An important component of many distribution systems 
is routing vehicles to serve customers. In fact, many 
companies are faced with problems regarding the 
transportation of people, goods or information. In many 
cases, they have to efficiently manage a heterogeneous 
vehicle fleet providing pick-up and delivery services to 
a set of customers. These companies have to optimize 
transportation by using rational manners and effective 
tools.  

This class of logistics problems is usually known 
as the vehicle routing problem (VRP) and its objective 
is usually twofold: to minimise travelling costs by 
arranging  visits in a proper sequence, while reducing 
the number of vehicles to be used in order to serve all 
customers. In the field of combinatorial optimization, 
the VRP is regarded as one of the most challenging 
problems because of its NP-Hardness (Savelsbergh 
1985). For such problems in real situations, it is often 

desirable to obtain approximate solutions, so they can 
be found fast enough and are sufficiently accurate for 
the purpose. 

The most basic VRP is the capacitated vehicle 
routing problem (CVRP) that assumes a fleet of 
vehicles of fixed capacity housed in a central depot. 
More realistic routing problems include travel times 
between every pair of nodes, customer service times 
and the maximum tour duration as additional problem 
data. These characteristics define the VRP with time 
windows (VRPTW) as a generalization of the CVRP. 
The VRP with pick-up and delivery and time windows, 
or pick-up and delivery problem with time windows 
(PDTW), is a generalization of the VRPTW. In the 
PDTW, pairs are defined among customers so pick up 
and drop off locations are determined, in addition to 
time windows constraints related to each visit. 

Several classes of VRP have been studied in the 
literature. The VRPTW has been the subject of 
intensive research efforts for both heuristic and exact 
optimization approaches. Because of the high 
complexity level of the VRPTW and its wide 
applicability to real situations, solution techniques 
capable of producing good solutions in limited time, i.e. 
heuristics, are of major importance (Bräysy and 
Gendreau 2005a). Over last few years, many new 
heuristic approaches have been proposed, primarily 
metaheuristics, for tackling the VRPTW (Bräysy and 
Gendreau 2005b). With respect to the literature on 
VRPs, it is interesting to observe that although PDTW 
is as important and interesting from practical and 
theoretical points of view, it has received far less 
attention (Lau and Liang 2001; Savelsbergh and Sol 
1995). 

The present paper is structured as follow: section 2 
introduces the proposed PDTW model, where the 
complete problem is decomposed into two separated 
subproblems. Next section includes a description of the 
adopted hybrid approach and algorithm’s general 
structure, as well as some performance improvements 
added to the model. Section 4 presents some results 
obtained by using the proposed algorithm and 
corresponding analysis. Finally, conclusions and further 
research directions are outlined. 



2. PROBLEM DESCRIPTION 
The PDTW can be considered as a routing network, 
represented by a directed graph G{I,P,A}, connecting 
customer nodes I = {i1, i2, ..., in} and depot nodes P = 
{p1, p2, ..., pl} through a set of directed edges A = {(i,j) | 
i,j ∈ (I ∪ P)}. The edge aij ∈ A is supposed to be the 
lowest cost route connecting node i to node j. At each 
customer location i ∈ I, a fixed load wi is to be picked 
up or delivered by a single vehicle. A time window [ai, 
bi] is defined for each customer i, where ai is the earliest 
time and bi is the latest time at which the service can 
start. Service time sti at node i is also given. 

A fleet of heterogeneous vehicles V = {v1, v2, ..., 
vm} with different capacities qv located in a depot p ∈ P 
is available to accomplish the required pick-up/delivery 
tasks. Each vehicle v must leave from the depot, 
perform corresponding pick-up and delivery orders 
without exceeding its capacity qv at any time and then 
return to the same depot. In the present model, only one 
depot is considered, but the model can be easily 
extended to include multiple depots. 

The route for vehicle v is a tour of nodes rv = (p, 
..., ij, ij+1, ..., p) connected by directed edges belonging 
to A that starts and ends at depot p. Associated to the set 
of edges aij ∈ A, there is a pair of matrices C = {cij} and 
T = {tij} denoting the travel cost and the travel time 
from node i to node j, respectively. It is assumed that 
distances and times defined in the problem satisfy the 
triangular inequality, i.e. cik + ckj ≥ cij and tik + tkj ≥ tij 

)(,, PIkji ∪∈∀ .  
A set of work orders O = {(i,j) | i ≠ j; i, j ∈ (I ∪ 

P)} is defined among customers (O  ⊆ (I ∪ P) ×  (I ∪ 
P)) to relate pick-up and delivery locations. Thus, if 
vehicle v is assigned to serve the order (i,j), denoted as 
oij, it must visit customer i to pick up the corresponding 
load wi before visiting customer j, where a quantity wj is 
to be delivered. In any case, both customers i and j 
related through an order oij should be assigned to the 
same vehicle’s v route (5).  

The proposed mathematical formulation, based on 
the MILP formulation presented in (Dondo and Cerdá 
2007), requires defining two different sets of binary 
variables: 
 

• The allocation variable Yiv to assign vehicle v 
∈ V to customer i ∈ I, taking value 1. 
Otherwise, it is 0. 

• The precedence variable Sij to denote that 
customer i ∈ I is visited before (Sij = 1) or after 
(Sij = 0) customer j ∈ I. It should be noted that 
this approach uses the notion of generalised 
predecessor rather than direct predecessor. 

 
In the present model, PDTW has been divided into 

two subproblems, concerning resource's allocation and 
vehicle's routing separately. Allocation variable Yiv is 
determined by solving the allocation subproblem, while 
precedence variable Sij is set on the routing part. 
Furthermore, in the routing subproblem, values 

obtained for Yiv variables are used. Thus, the allocation 
variable Yiv is shared between both subproblems. 

Allocation and routing subproblems have been 
formulated separately according to the formalisms to be 
used. Thus, Constraint Programming (CP) paradigm has 
been used to partially define the allocation subproblem, 
while routing calculation has been tackled from a MILP 
perspective. 

The proposed allocation subproblem has been 
formulated as follow: 
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where cfv is the fixed cost associated to using vehicle v. 

The objective function (1) aims to minimise the 
number of vehicles used in the solution. A boolean 
variable Bv has been defined for each vehicle v ∈ V to 
determine whether v is used in the solution (Bv = 1) or 
not (Bv = 0), according to the expression 
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being n the total number of customers. 

Constraint (2) states that every customer node i ∈  
I must be serviced by a single vehicle v ∈  V. Equation 
(2) is a CP global constraint equivalent to the linear 
expression 
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Capacity constraint (3) states that the overall load 

along the route of a vehicle v ∈  V should be zero. Thus, 
all vehicles should be empty when departing or 
finishing their respective routes. 

Expression (4) ensures that vehicle v assigned to 
serve customer i has enough capacity to pick up the 
corresponding load wi. This constraint is meaningless 
for delivery locations, since their demand is always 
non-positive. 

The MILP formulation for the routing subproblem 
is presented next: 
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where ct is the cost per unit time; CVv and TVv are the 
total distance and time for vehicle v, respectively; Ci 
and Ti are the cost and travel time from the depot to 
node i, respectively; Qi is the load of vehicle v at 
customer i; Δai and Δbi are time window violations at 
customer i; ΔTv is the time window violation for vehicle 
v; Bij is a boolean variable; Mc, Mt and Mq are large 
positive numbers. 

Problem’s objective function (8) aims to minimise 
the overall service expenses, including travelling 
distance and time costs. Moreover, time window 
violations are included in the last two terms, penalizing 
non-fulfilment on either the maximum allowed working 
time (ΔTv) or customers’ time windows (Δai and Δbi). 

Equation (9) states that the cost of travelling from 
depot p to customer i (Ci) should be greater than or 
equal to the least travel cost from the depot to node i 
(cpi). This constraint becomes binding iff customer i is 
the first visit included in vehicle’s v route. 

Constraint (10a) states that the distance based 
travel cost from the depot to customer j (Cj) should be 
greater than Ci by at least cij whenever customers i and j 
are included in the same route (Yiv = Yjv = 1, for some 
vehicle v) and i is visited first (Sij = 1). In case customer 
j is visited earlier (Sij = 0), the reverse statement (10b) 
holds. Constraints (10a) and (10b) both become 
redundant if nodes i and j are serviced by different 
vehicles. Furthermore, Cj values are determined only by 
previous visit’s cost, due to triangular inequality 
ensures that Ci values are monotonically increasing. In 
addition, the latter prevents from cycles appearing in a 
feasible solution without adding specific constraints. 

Expression (11) states that the overall travelling 
cost incurred by vehicle v (CVv) must always be greater 
than, or equal to, the travelling expenses from the depot 
to any customer i (Ci) by at least the amount cip. Indeed, 
triangular inequality guarantees that the last node 
visited by vehicle v is the one finally binding the value 
of CVv. 

Constraints (12)-(14) are time equivalents to 
distance based cost constraints (9)-(11). Thus, 
properties described above still hold since expressions 

are only modified by adding the service time at 
customer i (sti). 

Time windows can be hard (HTW) or soft (STW). 
When the time windows are regarded as hard 
constraints, expression (15) states that a vehicle cannot 
start the service at the assigned customer i before the 
earliest time ai by simply making Δai = 0. In turn, 
constraint (16) prohibits to start the service at node i 
after the allowed latest time bi by setting Δbi = 0. In the 
STW case, time window constraints may be violated at 
a finite cost (ρt) and the vehicle may start the service at 
node i before time ai. In such a case, variables Δai and 
Δbi stand for the size of time windows violations and 
are determined by expressions (15) and (16), 
respectively. 

Constraint (17) applies in case the maximum 
allowed working time tvv

max is regarded as a soft 
constraint that may be violated at some penalty cost 
(ρv). Otherwise, ΔTv = 0 and TVv should not be greater 
than tvv

max. 
Expression (18) ensures that the current load at 

customer i never exceeds assigned vehicle’s capacity. 
This constraint only becomes active in pick-up 
locations, since demands at drop-off nodes are non-
positive. Therefore, if a pick-up location with an 
associated positive load fulfils expression (18), it is also 
accomplished by consequent delivery destinations. 

Constraint (19) allows the current load to be traced 
at each visited customer. This expression states that it 
should be greater than, or equal to, the sum of all 
previous visits and the corresponding demand (wi). A 
boolean variable (Bij) is introduced to determine 
whether a customer is visited previously in the same 
route or not. Its value is given by the expression 
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3. HYBRID APPROACH 
The model presented in the previous section has been 
programmed using the software ECLiPSe. It has been 
implemented using eplex and ic libraries, both included 
in the ECLiPSe package. The eplex library provides an 
interface to use an external mathematical programming 
(LP, MIP or quadratic) solver from within ECLiPSe. In 
this particular case, only default CPLEX solver (ILOG 
2001) has been used. The ic library contains a general 
interval propagation solver which can be used to solve 
problems over both real and integer variables. 
Therefore, constraint propagation mechanisms are 
included in this library.  

As a previous stage, complete CVRP, VRPTW and 
PDTW models (i.e. treating allocation and routing 
subproblems together) have been defined in eplex and 
ic, independently. However, separated implementations 
are not able to solve some problems or have proved to 



be quite inefficient. Thus, a hybrid approach has been 
adopted to tackle the PDTW problem, in order to 
increase efficiency but loosing optimality. 

In the final implementation, different solvers have 
been used to tackle each subproblem. First, ic has been 
used to solve the allocation subproblem. Second, eplex 
solver is used in the routing subproblem. Both solvers 
share the allocation variable Yiv and interact according 
to patterns described on (Apt and Wallace 2007). 
However, algorithm’s structure allows swapping solvers 
with few changes. Ic and eplex could be easily 
interchanged, so ic would be used to solve the routing 
subproblem and eplex would provide an optimal 
solution for the allocation step. With this purpose, only 
expression (2) should be changed to its linear version 
(7). Ic functions permit to solve the proposed routing 
subproblem formulation, but lacking a good efficiency. 
Moreover, incorporating different algorithms or solvers 
to the model would also lead to few changes in models' 
general structure and problem’s formulation. 

Hybrid algorithm’s structure proposed to solve 
PDTW problems is summarized next: 
 

1. ic solves the allocation subproblem 
2. eplex solves the routing subproblem using Yiv 

values found by ic 
3. Check time windows: 

(a) If they are not fulfilled: 
(i) Add new constraint to allocation 

subproblem 
(ii) Go to step 1 

4. Return solution found 
 
It can be observed that, even though the routing 

subproblem is defined using STW, hybrid algorithm's 
behaviour corresponds to a HTW model. Time windows 
constraints are checked after solving the routing 
subproblem. If they are not fulfilled for a particular 
route, a new constraint is added to the allocation 
subproblem, so all customers originally assigned to that 
route cannot be allocated together in the next iteration: 

 
)1,,2( rvv Ynatmost −   (22) 

 
This constraint states that at least a pick-up/delivery pair 
has to be removed from vehicle’s v route (rv). This 
restriction is performed by forcing Yiv variables 
( }|{ IriYY vivrv ⊆∈= ) to take a maximum of nv-2 
times the value 1, being nv the current number of 
customers assigned to route rv. Expression (22) is a CP 
global constraint equivalent to the linear expression 
(23), used in case solvers are swapped. 
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Allocation constraint (22) may be added according 

to two different criteria. First, it may be added 
whenever a vehicle has to wait before starting the 

corresponding service (arriving to a customer before the 
lower time window bound ai) or finishing too late (after 
the upper bound bi). On the other hand, constraint (22) 
may be only added if a vehicle violates any upper bound 
among customers included in its route. In this case, 
routes violating only lower bounds, i.e. vehicles are 
forced to wait but they can perform the service within 
defined time windows, are supposed to be able to accept 
new work orders to fill time gaps, so no additional 
constraints (22) are considered.  

Once constraint (22) is added, ic solver is called 
again to rearrange customers. Then, eplex optimizes 
routes using new Yiv values. The process finishes 
whether a solution fulfilling time windows constraints is 
found or ic solver fails to find a feasible solution for the 
allocation subproblem. Thus, this algorithm only 
succeeds if a solution for the HTW case exists. 
However, the algorithm may be easily modified to track 
results at each iteration, so it can return a previous 
solution if it fails. 

It should be noticed that, every time a new 
constraint (22) is added to the allocation subproblem, a 
pair of pick-up/delivery locations is to be removed from 
the set of customers assigned to a route. However, it 
does not specify which particular work order has to be 
removed from the route. This fact, combined with the 
simplicity of the objective function (1), may lead to a 
lack of efficiency due to a random selection of 
customers to be removed. Some future work could be 
addressed to define a different objective function or 
heuristics for the allocation subproblem, in order to 
reduce this problem's impact. 

 
3.1. Time windows pre-processing 
Aiming to increase algorithm’s efficiency, time 
windows defined for each customer are pre-processed to 
add additional constraints to the allocation subproblem. 
Depending on the problem instance, some time 
windows may be overlapped, so a vehicle cannot serve 
those customers without violating their respective 
working times. Time windows pre-processing is used to 
detect this situation and add constraints defining which 
customers are incompatible to be in the same route. 

Two customers are determined to be incompatible 
if a vehicle cannot perform both services within their 
respective time windows. Considering a vehicle arriving 
to customer i ∈ I and starting the service at a time 
corresponding to the lower bound of its time window 
(ai), it cannot be visited first in the same route than a 
second customer j ∈ I if the time cost to reach j from i 
exceeds former's time window upper bound (bj), i.e. 

jijii bcsta >++ . If this expression also holds 
swapping indexes i and j, then customers i and j cannot 
lead to a feasible solution fulfilling time windows when 
they are included in the same route. Therefore, an 
additional constraint (24) is defined in the allocation 
subproblem, so i and j cannot be assigned to the same 
vehicle v (i.e. VvYY jviv ∈∀≤+    1 ): 
 



VvYYatmost jviv ∈∀   )1],,[,1(   (24) 
 

Constraint (24) is defined for each pair of 
incompatible customers. Thus, a first approach of the 
number of vehicles and routes to be calculated is 
obtained by classifying customers into groups where 
time windows constraints can be fulfilled. Moreover, 
time windows pre-processing helps to avoid the 
exploration of some unfeasible solutions, since it 
provides a more constrained allocation subproblem. 
Indeed, in the best case it may provide allocation 
subproblem's solution. 

 
3.2. Routing subproblem decomposition 
Routing subproblem is tackled using allocation variable 
Yiv values obtained from the allocation subproblem. 
Although customers may be assigned to different 
vehicles, i.e. different routes, the optimization process 
used in the presented hybrid model performs the 
calculation over all routes at the same time. Thus, the 
number of variables that eplex solver should take into 
account may grow according to problem's instances. 
This fact may increase dramatically the computation 
time. Furthermore, time windows violations can only be 
detected at the end of the process. 

In order to reduce the computation time, the 
proposed routing problem decomposition provides a 
method to calculate routes separately. With this 
purpose, an independent routing subproblem is solved 
for each vehicle, reducing problem's dimensions and 
improving algorithm's computation time. Moreover, 
time windows can be checked after each route is 
calculated, so a partial state that leads to an unfeasible 
global solution can be detected. Therefore, the routing 
subproblem decomposition may avoid the exploration 
of unpromising regions. 
A set of customers is assigned to a vehicle v in the 
allocation process, defining Yiv values. Then, distance 
and time submatrices can be obtained, including only 
those customers assigned to a particular vehicle and 
defining a smaller problem instance. On the other hand, 
routing subproblem's objective function (8) has been 
modified to take into account a single vehicle. Thus, the 
original routing subproblem is decomposed into several 
smaller instances according to the number of routes to 
be calculated, reducing the required computation time. 
Eventually, the total cost associated to the routing 
process corresponds to the sum of all vehicles’ objective 
function values. 

Furthermore, expressions (9)-(18) are simplified by 
removing all references to Yiv values, since only 
assigned customers are considered (i.e. Yiv = 1 always). 
Therefore, the number of constraints to be evaluated 
every time variable Sij is labelled is clearly reduced, 
increasing algorithm’s efficiency. Indeed, constraint 
(19) can be modified so it only depends on precedence 
variable Sij values: 
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Time windows can be checked after each route 

calculation or after all routes are determined. The 
former may save computation time, since all routes may 
not have to be calculated at each iteration. The latter 
may not provide such a computation time reduction, but 
a complete solution may be obtained at each iteration. 
In both cases, an additional constraint (22) is added to 
the allocation subproblem for every route whose 
assigned customers’ time windows are violated. 

In the proposed model, time windows are checked 
after all routes have been calculated. Performance is 
improved due to smaller instances are tackled. At the 
same time, a complete solution is calculated at each 
iteration, even though time windows are not fulfilled, so 
a response may be provided if the allocation process 
fails after adding new constraints (22). Considering 
time windows checking after each route calculation 
would make this process more complex, since some 
routes would have to be recalculated after the allocation 
process fails. 

 
4. APPLICATION AND RESULTS 
The model presented in previous sections has been 
tested on small PDTW problem instances. These test 
cases have been defined aiming to detect errors and 
ensure all implementations provide expected results. 
Finally, a real-case based problem (Busquets et al. 
2005) with a reasonable number of customers and work 
orders has been defined. Unfortunately, the model could 
not be tested on PDTW benchmark problems, since 
there is not a set of well accepted benchmark instances, 
although some efforts have been addressed in this 
direction (Lau and Liang 2001). 

PDTW instances defined to test algorithm’s 
validity have the following characteristics: 

 
• 6 customers grouped in 3 work orders, 1 depot 

and 2 vehicles with different capacities. 
Optimal solution’s cost is 483 and 2 vehicles 
are needed. 

• 7 customers grouped in 5 work orders, where 4 
of them share the same pick-up location, 1 
depot and 2 vehicles with different capacities. 
Optimal solution’s cost is 266 and 1 vehicle is 
needed. 

• 33 customers grouped in 16 work orders, 
where pick-up locations are shared, 1 depot 
and 3 vehicles with the same capacity. Optimal 
solution’s cost is 2825.9 and 3 vehicles are 
needed. 

 
Table 1 show results obtained for different 

implementations and solvers combinations. In all cases, 
obtained solutions provide the exact number of vehicles 
required in the optimal case. Deviation from optimal 
solution is only indicated if the algorithm has not 
reached the optimum, otherwise it is 0%. Blanks 
correspond to those cases where the algorithm could not 
find a solution in a reasonable amount of time. 



 
Table 1: Results Obtained for PDTW Instances  

6 cust. 7 cust. same pp 33 cust. Solver 
Sol. Sol. Sol. Dev. 

eplex 483 (0.17s) 266 (1.50s) - - 
ic - 266 (3.02s) - - 

eplex-ic 483 (0.23s) 266 (0.31s) - - 
eplex-ic + 

TWP 483 (0.13s) 266 (0.34s) - - 

eplex-ic + 
routes 483 (0.19s) 266 (0.47s) - - 

eplex-ic + 
TWP + 
routes 

483 (0.14s) 266 (0.44s) - - 

ic-eplex + 
TWP 483 (0.16s) 266 (0.25s) 3134.1 

(9.23s) 11% 

ic-eplex + 
TWP + 
routes 

483 (0.08s) 266 (0.33s) 3134.1 
(8.59s) 11% 

 
First two rows present results for single-solver 

initial models. It can be observed that eplex is more 
efficient than ic’s implementation, due to the model is 
more suitable for a MILP solver and does not 
correspond to a CP specific formulation. Next rows 
show results obtained for the proposed hybrid model 
combined with presented performance improvements, 
i.e. time windows pre-processing and routing 
subproblem decomposition. Several tests have been 
done interchanging solvers’ tasks. First four results 
correspond to using eplex as allocation subproblem’s 
solver and ic to tackle the routing task. Reverse 
assignation achieve results presented in last rows. It can 
be noticed that all models reach the optimum for small 
PDTW instances. On the other hand, 33-customers 
problem is only solved by ic-eplex hybrid algorithms, 
although the optimal solution is not reached. 
Computation times are also shown, with lowest values 
highlighted for each problem. In all cases, best 
calculation times are obtained for the ic-eplex model 
described in the present paper. It should be remarked 
that, in the 7-customers problem with shared pick-up 
locations, neither time windows pre-processing nor 
routing subproblem decomposition provide a significant 
computation time decrease. In this particular case, a 
single vehicle is needed to serve all customers, so only 
one route has to be configured. Thus, time may be spent 
checking corresponding time windows without adding 
additional constraints. Moreover, despite all models 
have to calculate a single route including same 
customers, routing subproblem decomposition forces 
the algorithm to dynamically define the eplex instance 
after solving allocation subproblem, i.e. additional time 
is to be spent on checking variables’ values. 
 
5. CONCLUSIONS AND FUTURE RESEARCH 
The present paper introduces the developed study about 
the PDTW, a well known NP-Hard problem. It presents 
a complete model, decomposed into two subproblems 
based on CP and MILP paradigms, to make it suitable 
to adopt a hybrid approach. 

Model’s implementation has been described, as 
well as general interaction patterns between solvers 

used to tackle the problem: ic and eplex. Moreover, 
performance improving techniques have been 
introduced, such as time windows pre-processing and 
routing subproblem decomposition. This hybrid 
approach has proved to be more efficient than those 
based on a single solver. In addition, algorithm’s 
structure and problem’s definition permit to easily 
interchange or substitute these solvers. Thus, some 
future efforts could be focused on developing specific 
methods, such as Lagrangian Relaxation, to tackle each 
subproblem more efficiently. 

This approach has demonstrated to be suitable to 
solve different problems in a reasonable computation 
time. However, the algorithm may not guarantee finding 
the optimal solution. Reasons might be found in 
subproblems decomposition, as well as constraint 
addition mechanisms. Further research is to be 
addressed in these directions to improve solutions’ 
quality while keeping a low calculation time. 
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