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Abstract This paper presents an original hybrid approach to solve the Capacitated
Vehicle Routing Problem (CVRP). The approach combines a Probabilistic Algo-
rithm with Constraint Programming (CP) and Lagrangian Relaxation (LR). After
introducing the CVRP and reviewing the existing literature on the topic, the paper
proposes an approach based on a probabilistic Variable Neighbourhood Search
(VNS) algorithm. Given a CVRP instance, this algorithm uses a randomized version
of the classical Clarke and Wright Savings constructive heuristic to generate a starting
solution. This starting solution is then improved through a local search process which
combines: (a) LR to optimise each individual route, and (b) CP to quickly verify the
feasibility of new proposed solutions. The efficiency of our approach is analysed after
testing some well-known CVRP benchmarks. Benefits of our hybrid approach over
already existing approaches are also discussed. In particular, the potential flexibility
of our methodology is highlighted.
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1 Introduction

The growing flows of freight have been a fundamental component of contempo-
rary changes in economic systems at the global, regional and local scales. Road
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transportation is nowadays the predominant way of transporting goods in many
parts of the world. Direct costs associated with road transportation have experienced
a significant increase in the last decade due to the rise of oil price, among other
economical factors. Furthermore, road transportation faces new challenges related
to other indirect or external related costs, which usually are easily observable—noise,
pollution, accidents, etc.—but difficult to quantify. The role of transport and logistics
as an economic sector can not be nowadays neglected since new modes of production
are concomitant with new modes of distribution. Achieving flexible, efficient and sus-
tainable routing is a complex strategy requiring a high level of logistical integration
to properly respond to variations of the freight transport demand. The necessity for
optimizing the road transportation affects to both the public and the private sectors,
and constitutes a major challenge for most industrialized regions.

The Vehicle Routing Problem (VRP) provides a theoretical framework for
approaching the class of logistic problems dealing with physical distribution. This
is among the most popular research areas in combinatorial optimization. It was
first defined by Dantzig and Ramser in 1959 [10], and several variants of the basic
problem have been proposed and studied later. These variants represent different
types of operational constraints such as, for instance, time windows, pick up and
delivery, heterogeneous fleets or multi-depot problems.

From the industrial applicability perspective, the VRP characterizes a family
of different distribution problems which, one way or another, are present in real
industrial problems. However, in most of the application cases none of the classical
VRP variants can represent uniquely the real problem. That is, a combination of
different operational constraints are present in many realistic cases. In this scenario,
it becomes evident the need of developing new methods, models and systems to give
support to the decision-making process so that optimal strategies can be chosen in
physical distribution, in particular, in road transportation.

This paper presents an original hybrid approach to solve the VRP. This method-
ology has been especially designed for being flexible in the sense that it can be used,
with minor adaptations, for solving different variants of the VRP present in industrial
application cases. The approach is based on the classical decomposition into two
subproblems: a resource allocation problem (to fit operational constraints), and a
routing problem (to minimize the associated traveling costs).

The Capacitated version of the VRP (CVRP) has been chosen in order to illustrate
the benefits of the proposed methodology. The CVRP is the most basic VRP variant,
which assumes a fleet of vehicles of homogeneous capacity housed in a single depot.
The CVRP is a generalization of the Traveling Salesman Problem (TSP) and is
therefore NP-hard [41]. The CVRP is defined over a complete graph G = {I, E},
where I = {1, 2, . . . , n} is the node set representing clients to be served plus the depot
(node 1), and E = {eij = (i, j)|i, j ∈ I} is the edge set representing connecting roads,
streets, etc. Edges eij in E have an associated cost cij > 0, which is the traveling cost
from node i to node j. It is usual to consider symmetric costs (i.e., cij = c ji,∀i, j ∈ I).
Moreover, each node i in I has a demand qi ≥ 0. A fixed fleet of m identical vehicles,
each one with capacity Q � max{qi}, is available at the depot to accomplish the
required delivery task. Solving the CVRP consists of determining a set of k ≤ m
routes with minimum total traveling cost and such that (a) each customer is visited
exactly once by a single vehicle, (b) each route starts and ends at the depot, and
(c) the total demand of the customers assigned to a route does not exceed the vehicle
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capacity Q. Therefore, a solution of a given CVRP instance is a set of k routes sharing
a common starting and finishing node (the depot).

The CVRP has been selected mainly because there are huge amounts of models,
techniques, benchmarks, and research on this topic. Hence, the proposed method-
ology can be easily compared—in terms of computational efficiency and solution
quality—with previously existing approaches. Nevertheless, from the perspective of
its industrial applicability, the basic CVRP model can be extended to tackle different
realistic cases by means of the proposed optimization scheme. These cases include
operational constraints beyond the basic vehicle capacity. Affordable examples are
limitations on the total driving time of each route, incompatible customer-driver
associations or constraints on the customer visiting periods (e.g. customer forbidden
visit day when building daily routes for a distribution problem). The proposed
optimization approach, as presented in this paper, is specifically designed to deal
with those operational constraints that involve the allocation part of the VRP.

This work proposes a Multi-Start Variable Neighborhood Descent (VND) [21]
structure whose local search process is supported by Constraint Programming (CP)
[39] and Lagrangian Relaxation (LR) [16]. Using the CP paradigm provides the
required flexibility to model those operational constraints, beyond vehicle capacity,
that are usually present in most real application cases. Due to this approach, adding
these constraints is just a constraint modeling issue, i.e., no change on the solving
strategy is required to deal with more realistic problems. The LR based algorithm is
used to efficiently find the optimal routing solution for each transportation resource.
A probabilistic (Randomized) Clarke and Wright Savings (RCWS) [28] constructive
method is used to generate initial solutions. This algorithm provides different good
quality solutions that are used as seeds to launch the exploration of different regions
of the search space. Therefore, the RCWS probabilistic behavior introduces a natural
diversification mechanism and turns the scheme into an approach likely to be
parallelized.

The main goal of the work presented in this paper is to introduce a general al-
gorithmic framework that integrates randomization, CP, LR, and VNS to efficiently
solve industrial VRPs with realistic constraints.

The remainder of this article is structured as follows. The next section provides
a literature review on the topic. Section 3 presents the technologies used in this
research, while Section 4 explains the adopted approach in detail. Section 5 contains
some numerical experiments and the corresponding discussion. Section 6 discusses
some of the main benefits of the presented approach. Finally, Section 7 summarizes
the main contributions of the paper.

2 Previous work on the Capacitated Vehicle Routing Problem

The Clarke and Wright’s Savings (CWS) constructive algorithm [8] is probably the
most cited heuristic to solve the CVRP. The CWS is an iterative method that starts
out by considering an initial dummy solution in which each customer is served by a
dedicated vehicle. Next, the algorithm initiates an iterative process for merging some
of the routes in the initial solution. Merging routes can improve the expensive initial
solution so that a unique vehicle serves the nodes of the merged route. The merging
criterion is based upon the concept of savings. Roughly speaking, given a pair of
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nodes to be served, a savings value can be assigned to the edge connecting these
two nodes. This savings value is given by the reduction in the total cost function due
to serving both nodes with the same vehicle instead of using a dedicated vehicle to
serve each node—as proposed in the initial dummy solution. This way, the algorithm
constructs a list of savings, one for each possible edge connecting two demanding
nodes. At each iteration of the merging process, the edge with the largest possible
savings is selected from the list as far as the following conditions are satisfied: (a) the
nodes defining the edge are adjacent to the depot, and (b) the two corresponding
routes can be feasibly merged—i.e., the vehicle capacity is not exceeded after the
merging. The CWS algorithm usually provides relatively good solutions, especially
for small and medium-size problems, but it also presents difficulties in some cases
[17]. Many variants and improvements of the CWS have been proposed in the
literature. For a comprehensive discussion on the various CWS variants, the reader
is referred to Toth and Vigo [45] and Laporte [30].

Monte Carlo Simulation (MCS) can be defined as a set of techniques that make
use of random numbers and statistical distributions to solve certain stochastic and
deterministic problems [31]. MCS has proved to be extremely useful for obtaining
numerical solutions to complex problems that cannot be efficiently solved by using
analytical approaches. Buxey [6] was probably the first author to combine MCS with
the CWS algorithm to develop a procedure for the CVRP. This method was revisited
by Faulin and Juan [11], who introduced an entropy function to guide the random
selection of nodes. MCS has also been used by Fernández de Córdoba et al. [14],
Juan et al. [26], Faulin et al. [12] and Juan et al. [27] to solve the CVRP. In this
last paper, the authors make use of MCS to develop an efficient randomized version
of the CWS heuristic, which we use in our approach to efficiently generate initial
solutions.

Another way to address the VRP has been the use of complete methods, which
ensure not only to find the solution but also, to prove its optimality. The main
drawback of these techniques is that they may only deal with small instances, up
to 100 customers [9]. Numerous heuristics (like the ones mentioned above) and
metaheuristics have also been studied for different VRP variants. In most cases, these
methods may solve larger instances but loosing optimality guarantees.

Using constructive heuristics as a basis, metaheuristics became popular for the
VRP during the nineties. Some early examples are the Tabu Route method by
Gendreau et al. [18] or the Boneroute method of Tarantilis and Kiranoudis [44].
Tabu search algorithms, like those proposed by Taillard [43] or Toth and Vigo [46]
are among the most cited metaheuristics. Genetic algorithms have also played a
major role in the development of effective approaches for the VRP. Some examples
are the studies of Berger and Barkaoui [4], Prins [36], Mester and Braysy [33] or
Nagata [35]. Another important approach to the VRP is given by the Greedy Ran-
domized Adaptive Search Procedure or GRASP [13, 15, 38]. A GRASP algorithm
is a multi-start or iterative process in which each GRASP iteration consists of two
phases: a construction phase—in which a feasible solution is produced—and a local
search phase—in which a local optimum in the neighborhood of the constructed
solution is sought. The best overall solution is kept as the result. In the construction
phase, a feasible solution is iteratively constructed, one element at a time. At each
construction iteration, the choice of the next element to be added is determined by
ordering all candidate elements in a candidate list according to a greedy function.
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This function measures the (myopic) benefit of selecting each element. The heuristic
is adaptive because the benefits associated with every element are updated at each
iteration of the construction phase to reflect the changes brought on by the selection
of the previous element. The probabilistic component of a GRASP is characterized
by the random choice of one of the best candidates in the list, but not necessarily the
top candidate. This choice technique allows for different solutions to be obtained at
each GRASP iteration.

Among metaheuristics, Variable Neighborhood Search (VNS), introduced for
the first time by Mladenovic and Hansen [34], is a quite recent method with far
less application examples in VRP research. However, interesting results have been
obtained even applying the simplest VNS algorithms, e.g. [22]. Embedding CP and
LR approaches into a general VNS framework has also demonstrated to be an
effective yet slow method to solve medium and large instances [20]. Combining these
techniques provided a methodology able to reach good quality results and even to
overcome some best-known solutions. However, the computational efficiency of this
methodology is far from state-of-the-art algorithms and becomes an important issue
to be addressed.

In this paper we present a hybrid approach combining a randomized version
of the CWS savings heuristic, the VNS metaheuristic, CP, and LR. Our approach
aims at being an efficient procedure for obtaining quasi-optimal solutions in small-
and medium-size CVRP instances and, at the same time, offers some additional
advantages over other existing metaheuristics, namely: (a) it is a robust and flexible
methodology that can be easily adapted to consider additional constraints and costs;
(b) it is able to generate a set of alternative good solutions in a reasonable time pe-
riod; and (c) it can be easily executed in parallel. As mentioned, we already combined
VNS with CP and LR in some previous work [20], but the algorithm presented in this
paper is much more competitive with state-of-the-art metaheuristics. Its efficiency
has been significantly enhanced by including a multi-start procedure which makes use
of a randomized CWS heuristic in order to quickly provide a set of different “good”
initial solutions, over which a flexible local-search process is applied. Thus, the VNS
diversification procedure is substituted by a multi-start approach, where different
regions are explored thanks to the diversity of solutions provided by the randomized
CWS algorithm. The local search process has also been enhanced with respect to
the previous work by incorporating new data structures, which permit reducing the
computational complexity. Finally, the methodology described in the present work
has been parallelized to improve its efficiency.

3 Technologies used

3.1 Probabilistic Clarke and Wright Savings algorithm

As discussed in Section 2, in the classic CWS algorithm, the edge with the largest
possible savings is selected from the list at each iteration of the merging process,
as far as the following conditions are satisfied: (a) the nodes defining the edge are
adjacent to the depot, and (b) the two corresponding routes can be feasibly merged—
i.e., the vehicle capacity is not exceeded. The approach presented in [29], instead,
assigns a selection probability to each edge in the savings list. This probability
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should be coherent with the savings value associated with each edge, i.e., edges
with larger savings will be more likely to be selected from the list than those with
smaller savings. In addition, this approach adds this biased random behavior without
introducing too many parameters in the algorithm. Basically, different geometric
statistical distributions during the randomized CWS solution-construction process
are employed: every time a new edge is selected from the list of available edges, a
value α is randomly selected from a uniform distribution in (a, b), where 0 < a ≤
b < 1. The α parameter defines the specific geometric distribution that will be used
to assign exponentially diminishing probabilities to each eligible edge according to its
position inside the sorted savings list. This way, edges with higher savings values are
always more likely to be selected from the list, but the exact probabilities assigned
are variable and they depend on the concrete distribution selected at each step.

3.2 Constraint programming

CP is a powerful paradigm for representing and solving a wide range of combinatorial
problems. Problems are expressed in terms of three entities: variables, their corre-
sponding domains and constraints relating them. The problems can then be solved
using complete techniques such as depth-first search for satisfaction and branch and
bound for optimization, or even tailored search methods for specific problems. Rossi
et al. [39] present a complete overview of CP modeling techniques, algorithms, tools,
and applications.

3.3 Lagrangian Relaxation

LR is a well-known method to solve large-scale combinatorial optimization prob-
lems. It works by moving hard-to-satisfy constraints into the objective function
associating a penalty in case they are not satisfied. An excellent introduction to the
whole topic of LR can be found in [16].

LR exploits the structure of the problem, so it reduces considerably problem’s
complexity. However, it is often a major issue to find optimal Lagrangian multipliers.
The most commonly used algorithm is the Subgradient Optimization (SO). Its
main difficulty lays on choosing a correct step-size λk aiming to ensure algorithm’s
convergence [37].

In order to address this limitation, the method introduced in [24] combines the SO
algorithm with a heuristic to obtain a feasible solution from a dual solution. It can get
a better upper bound (UB), so it improves the convergence on the optimal solution
starting at an initial UB obtained with a Nearest Neighbor Heuristic. Although
optimality may not always be reached, this method is able to provide a feasible
solution with a tight gap between the primal and the optimal cost in a reasonable
number of iterations.

3.4 Variable Neighborhood Search

A general VNS, as explained in [21], is a recent metaheuristic which exploits sys-
tematically the idea of neighborhood change. The Variable Neighborhood Descent
(VND) method starts from an initial solution x′ and it is improved by a local search
process.
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The local search process for each neighborhood N(x′) of x′ performs an exhaustive
exploration. All improving movements are recorded and sorted, so the best neighbor
x′′ ∈ N(x′) is constructed applying all independent changes in descending order. This
way, solution values are improved faster than applying single movements.

If this neighbor is better than the incumbent, the current solution is updated and
neighborhoods’ exploration is restarted. Otherwise, the algorithm keeps x′ as the
best solution found so far and continues exploring the next neighborhood. When
the VND process reaches a local optimum, no solution improvement may be found
according to defined neighborhoods.

3.5 Multi-start strategy

The VND-based local search process requires some type of diversification in order
to overcome local optimality. Many techniques have been suggested to avoid getting
trapped into a local optimum and aspire to find a global one. Among others, one
possible way to achieve diversification is using a shaking mechanism within the VNS
procedure. However, as more constraints are introduced in the problem, it usually
becomes more efficient—in terms of computational time employed—to generate
new feasible solutions from scratch than to apply complex shaking processes that
might end in non-feasible solutions. This is especially certain if we consider that
the Randomized version of the CWS used in this paper is a really fast method for
generating different feasible and good solutions that can serve as initial solutions in
our multi-start approach.

Thus, the Multi-Start strategy provides an appropriate framework which achieves
diversification by re-starting the search from a new solution once a region has been
extensively explored. Notice that each iteration includes two phases: a first one in
which a new feasible solution is constructed, and a second one in which the initial
solution is improved through a local search process.

4 The methodology in detail

The CVRP problem has been tackled using a significant modification of the approach
presented in [20]. There, the authors introduced a first methodology which combined
CP and LR within a VNS framework. The methodology presented in this paper
builds upon the aforementioned one, but it is significantly more efficient—both in
terms of computational times and solutions’ quality—since it also integrates the
RCWS-based Multi-Start approach. As it has been previously discussed, this strategy
allows to ensure an efficient diversification of the search space in order to: (a) avoid
local minima, and (b) reach near-optimal solutions in reasonable times.

CP and LR are used in the local search process within a VND structure. CP
is used to check solutions feasibility. This formalism provides a fast and flexible
method, able to model and include complex constraints while keeping a reasonable
computational efficiency. In turn, a tailored LR method is applied to calculate routes
every time a partial solution is generated. Using LR allows reducing the computation
time and algorithm’s definition and complexity when compared to other routing
post-optimization methods [40].
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Table 1 Multi start approach 0 Let x be the best solution.
1 Create a thread pool with TotalThreads threads.
2 Repeat the following steps until TotalThreads threads end or

until MaxSeconds time is consumed:
3 Execute MaxThreads simultaneous threads:
4 Generate an initial feasible solution x′ using RCWS.
5 Improve x′ to obtain x′′ by using VND+CP+LR.
6 If x′′ is better than x, let x ← x′′.

4.1 Pseudo-code for the multi-start strategy

A simplified scheme of the Multi-Start strategy is presented in Table 1. The RCWS
algorithm is used to find a good initial solution. Then, the VND method helps to
reach a local minimum in the neighborhood of the solution.

The Multi-Start strategy generates TotalThreads tasks within a thread pool. If a
thread is not available for the task, the task waits in a queue for an active task
to end. The algorithm stops when all tasks have been completed, or the maximum
execution time is reached, whichever happens first. Each task executes two phases:
find an initial solution and improve it in the search process. Starting from a different
initial solution ensures certain diversification, overcoming local optimality.

4.2 Pseudo-code for the Variable Neighborhood Descent procedure

A general VND has been implemented embedding CP and LR methods. In the im-
plemented algorithm, outlined in Table 2, all four described moves (see Section 4.3)
have been selected to be used in local search neighborhoods.

In the exploration neighborhood (Nk), starting from the solution x′, the kth
move is applied and the new solution’s feasibility is checked using CP. Whenever
it is proved feasible, LR is used to recalculate only modified routes. This approach
permits to consider only two routes per solution, reducing the computation time.

Table 2 Variable Neighborhood Descent Algorithm

0 Initialize the set LastModif ied ← V; let x′ be the initial solution.
1 Repeat the following sequence until the stopping condition is met:
2 Set k ← 1;
3 Repeat the following steps until k = kmax:
4 Exploration of Neighborhood.
5 Find all neighbors x′′ ∈ Nk(x′, LastModif ied).
6 Check feasibility of capacity constraints using CP.
7 Calculate the cost of modified routes using LR
8 If the solution x′′ is better than x′, include it in a list of improving changes.
9 Choose the best compatible neighbors.
10 Set LastModif ied ← ∅;
11 Sort the list of improving changes.
12 Apply the first improving changes.
13 Add in descending order the next compatible improvements.
14 Add the modified routes to LastModif ied.
15 If the list is empty, set k ← k + 1; otherwise set k ← 1.
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Improvements are stored in a sorted list until no more feasible solutions are left in
the kth neighborhood. Then, all those which are independent, i.e., affect different
route pairs, are applied in descending order on x′ to get a better solution x′′. This
way, solution improvement is faster than applying a single change at each iteration.

After the first exhaustive exploration of each neighborhood, only those changes
affecting routes modified by previous movements are explored in order to reduce the
computation time. The modified routes are stored in the set LastModif ied. A similar
approach may be found in Zachariadis and Kiranoudis [48].

4.3 Inter-route moves

The VNS metaheuristic is based on the exploration of different neighborhoods
around a given feasible solution. In order to establish these neighborhoods, several
moves are defined. In our approach, four different inter-route classical moves [42]
have been identified to be used within the local search process: (a) Relocate moves
a customer from one route to another, (b) Swapping exchanges two customers
belonging to different routes, (c) Chain is a specialization of 3-opt that swaps sections
of two contiguous customers from different routes, and (d) Ejection chain swaps the
end portions of two different routes.

The use of LR ensures the partial optimality of most solutions from the routing
perspective. The reason is that, since we are considering a relatively small number of
customers per route, the proposed approach can quickly find the optimal solution to
most TSP instances. In effect, the respective lower bounds (LB) and upper bounds
(U B) converge rapidly, keeping their gap between 0 and 10−10, which guarantees the
solution optimality. In addition, LR solves all routes in negligible times. Thus, LR
is an efficient alternative for intra-route optimization processes and avoids defining
intra-route moves.

4.4 Pseudo-code for the Lagrangian Relaxation procedure

The LR-based method is used within the local search process to solve the routing
problem to optimality. It can be considered a specification of the Lagrangian
Metaheuristic presented in Boschetti and Maniezzo [5]. As mentioned in Section 3.3,
it combines the SO algorithm with a heuristic aiming at improving algorithm’s
convergence to the optimum. The stopping criterion is based on the maximum
number of iterations (k < maxiterations) and also on a floating-point exception
(λk < 10−10). The applied LR-based method procedure is shown in Table 3.

The proposed LR relaxes the constraint set requiring that all customers must
be served by weighting them with a multiplier vector u, since all subcycles can be
avoided constructing the solution x as a 1-tree [23]. The Lagrangian Dual problem
obtained is max

u∈Rn
L(u) where L(u) = min

x1−tree

∑

e∈Ev

cexe + ∑

i∈Iv

ui(2 − ∑

e∈δ(i)
xe).

The proposed heuristic to improve the U B is applied when the solution is nearly
a Hamiltonian route (step 8), i.e., the solution has few vertices without two incident
edges. This heuristic replaces an edge e = (i, j), where j has some extra edges, for
an edge e = (i, l), where l has one single edge. Before applying the exchange, the
heuristic checks if the new solution is a 1-tree. Otherwise, the heuristic can obtain an
unconnected subtree.
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Table 3 The Applied
LR-based Algorithm

0 Initialization
1 Initialize parameters u0 = 0; δ0 = 2;αL = 1/3
2 Obtain an U B applying Nearest Neighbor Heuristic
3 Initialize L = L(u0) + αL(U B − L(u0))

4 Iteration k, repeat until the stopping condition is met:
5 Solve the Lagrangian function L(uk)

6 Check the subgradient γ k
i = 2 − ∑

e∈δ(i) xe

7 if ‖ γ k ‖2= 0 then Optimal solution is found ⇒ EXIT
8 if ‖ γ k ‖2< ξ then apply a heuristic to improve the UB
9 Check the parameter L

10 Calculate the step-size λk = δk
L − L(uk)

‖ γk ‖2

11 Update the multiplier uk+1 = uk + λkγ k

12 k ← k + 1

A good estimation of ξ will avoid increasing the computation time excessively.
First, its value may be large, but it should be updated whenever a feasible solution
is found according to ξ =‖ γ k ‖2. If this parameter is not correctly updated, the
heuristic becomes time consuming. Eventually, the heuristic could find the optimal
solution without detecting it, so the method would continue iterating until LB = U B.

As mentioned, the convergence of the algorithm is critically influenced by the
step-size λk. This value relies on either the LB or the U B, which are normally
unknown or bad estimated. Therefore, convergence may not be assured for all cases.
In order to overcome this limitation, a parameter L, such that LB ≤ L ≤ U B, is
introduced. By definition, this parameter corresponds to a better estimation of the
optimum L∗ than those obtained for LB and U B. The calculation of the step-size
turns into:

λk = δk
L − L(uk)

‖ γk ‖2 (1)

Convergence is guaranteed if the term L − L(uk) tends to zero. In turn, conver-
gence efficiency can be improved as long as the new L parameter gets closer to the
(unknown) optimal solution. Finally, the parameter δk is initialized to the value 2 and
is updated as suggested by Zamani and Lau [49].

5 Computational results

The methodology described in this paper has been implemented in Java and linked to
the open-source CP software system ECLiPSe 6.0 [3]. All tests have been performed
on a dedicated server with an Intel i5 processor at 2.66GHz and 16GB RAM. A total
of 91 classical CVRP benchmark instances available at www.branchandcut.org have
been used to test the efficiency of the proposed approach when dealing with this
simple (in terms of constraints) but extensively tested scenario. In order to ensure
fulfillment of the triangular inequality property, only those instances using Euclidean
metrics have been selected. The selected problems also include 7 instances from [7]
(denoted in tables as C1–C5, C11, and C12) for further comparison with some recent
metaheuristics.
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As the algorithm has been designed to be run in a parallel computing environment,
a test has been done over the set A of benchmark problems to determine the
most suitable number of simultaneous threads. This parameter is to be fixed mainly
according to computer’s characteristics. In the particular server used in this work, up
to 4 threads may be executed in parallel in order to keep a reasonable computational
efficiency. In the performed test, adopting a parallelized approach permits reducing
the total computation time significantly. In particular, for problems from the set A,
the total computation time is 41% lower, on average, than the total time spent using a
sequential approach. For this reason, all results presented in this paper correspond to
a Multi-Start VND implementation with 4 parallel processes, since this approach has
demonstrated to keep a reasonable balance between the time spent on calculating
one single solution and the total execution time.

5.1 Discussion of results

Table 4 shows results obtained for some representative problems from the selected
benchmark sets. Due to algorithm’s probabilistic behavior, the final solutions’ quality
depends on the total number of threads. For this reason, 100 total tasks have been
considered for each problem, i.e., 100 pseudo-optimal solutions have been generated
for each benchmark instance. Table 4 summarizes information regarding the best
solution found (OBS) for each problem, as well as the time required to reach this
solution. These results are compared to the best known solutions (BKS) so far.
Most sources give these values as integer numbers, obtained by rounding costs,
except for the problems from [7] where real values are usually given. From the
detailed integer solutions, real costs have been calculated and reported. It should
be remarked that the real cost of an integer optimal solution might not correspond
to the optimal solution considering real costs. For this reason, negative gaps appear
on this table. Thus, it can be deduced that the Multi-Start VND is able to match,
and in many cases improve, the real value associated to the best known integer
solutions. Concretely, the presented approach has been able to improve 23 best
known solutions, considering real costs, out of the 91 tested instances. In addition,
the gap is kept reasonably low for all considered instances, being the average gap
0.65%. It remains lower, 0.17%, for the problems selected in Table 4, which include
most of the largest instances.

Furthermore, it should be remarked that these results have been obtained in
competitive times even for some large instances. As shown in Table 4, most solutions
for small problems are obtained in less than a second, while larger instances require
higher yet reasonable computational times. In most cases, higher times are closely
related to higher quality solutions, i.e., solutions with a negative gap.

These results are similar to other state-of-the-art metaheuristics. Table 5 provides
a comparison between the proposed approach and some recent publications. The
first two selected metaheuristics correspond to the previous work by the authors:
a hybrid VNS (HVNS) presented in [20] and the randomized Clarke and Wright
Savings (SR-GCWS) algorithm by [29]. The next three metaheuristics are a hybrid
algorithm of Simulated Annealing and Tabu Search (SA-TS) introduced in [32], a
hybrid Electromagnetism-like heuristic (HEMA) proposed by [47], and a Particle
Swarm algorithm (SR-2) described in [25]. Most publications only report results
corresponding to the 14 instances from [7]. For this reason, few results corresponding



D. Guimarans et al.

Table 4 Results for 50 classical benchmark instances

Problem # Nodes BKS OBS Gap (%) # Routes Time (s)
BKS-OBS

A-n32-k5 31 787.81 787.08 −0.09 5 0.633
A-n33-k5 32 662.76 662.11 −0.10 5 0.842
A-n33-k6 32 742.83 742.69 −0.02 6 0.480
A-n37-k5 36 672.59 673.59 0.15 5 1.948
A-n37-k6 36 952.22 950.85 −0.14 6 1.631
A-n38-k5 37 734.18 733.95 −0.03 5 2.546
A-n45-k6 44 944.88 944.88 0.00 6 1.622
A-n46-k7 45 918.46 918.13 −0.04 7 2.062
A-n54-k7 53 1,171.78 1,171.78 0.00 7 4.007
A-n55-k9 54 1,074.46 1,076.85 0.22 9 5.544
A-n63-k9 62 1,622.14 1,622.14 0.00 9 8.073
B-n31-k5 30 676.76 676.09 −0.10 5 0.657
B-n34-k5 33 791.24 789.84 −0.18 5 0.497
B-n35-k5 34 956.29 958.94 0.28 5 1.174
B-n38-k6 37 809.45 809.45 0.00 6 1.211
B-n39-k5 38 553.27 553.16 −0.02 5 1.577
B-n43-k6 42 747.54 746.98 −0.07 6 1.520
B-n45-k5 44 755.43 753.96 −0.19 5 1.011
B-n50-k7 49 744.78 744.23 −0.07 7 1.721
B-n50-k8 49 1,316.20 1,319.53 0.25 8 7.069
B-n51-k7 50 1,035.71 1,037.54 0.18 7 597.915
B-n57-k9 56 1,603.63 1,604.88 0.08 9 7.653
B-n64-k9 63 869.32 868.31 −0.12 9 287.953
E-n22-k4 21 375.28 375.28 0.00 4 0.337
E-n23-k3 22 568.56 568.56 0.00 3 0.422
E-n33-k4 32 838.72 837.67 −0.13 4 0.819
E-n51-k5 (C1) 50 524.61 527.98 0.64 5 17.164
E-n76-k10 (C2) 75 835.26 843.49 0.99 10 28.941
E-n101-k8 (C3) 100 826.14 841.16 1.82 8 195.271
F-n45-k4 44 724.57 727.75 0.44 4 4.459
F-n135-k7 134 1,170.65 1,179.09 0.72 7 630.427
G-n262-k25 261 5,685.00 5,722.00 0.65 25 1,651.360
M-n101-k10 (C12) 100 819.81 821.40 0.19 10 51.395
M-n121-k7 (C11) 120 1,042.11 1,045.14 0.29 7 137.553
M-n151-k12 (C4) 150 1,028.42 1,052.52 2.34 12 834.642
M-n200-k17 (C5) 199 1,291.45 1,324.91 2.59 17 243.789
P-n16-k8 15 451.95 451.95 0.00 8 0.019
P-n19-k2 18 212.66 212.66 0.00 2 0.243
P-n20-k2 19 217.42 217.42 0.00 2 0.148
P-n21-k2 20 212.71 212.71 0.00 2 0.275
P-n22-k2 21 217.85 217.85 0.00 2 0.277
P-n23-k8 22 531.17 531.17 0.00 8 1.447
P-n40-k5 39 461.73 461.73 0.00 5 6.189
P-n45-k5 44 512.79 512.79 0.00 5 10.016
P-n50-k7 49 559.86 560.15 0.05 7 5.155
P-n51-k10 50 742.48 742.36 −0.02 10 5.156
P-n55-k10 54 697.81 698.00 0.03 10 5.331
P-n55-k8 54 592.17 581.17 −1.86 7 14.703
P-n76-k5 75 635.04 633.32 −0.27 5 92.627
P-n101-k4 100 692.28 693.54 0.18 4 839.622

Average 0.17
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to other problem sets are reported for the latter three metaheuristics in Table 5.
Moreover, some of the instances from [7] include an additional constraint on the
maximum route length that is not handled in the proposed version of the algorithm.
Therefore, results for these instances have been omitted in this table.

It may be observed that the proposed approach is comparable in terms of
quality and computational efficiency to these recent metaheuristics. Times needed
by our approach to reach a pseudo-optimal solution are in most cases lower than
those required by means of the other algorithms. It should be remarked that
the proposed approach clearly improves the efficiency of the previous algorithms
HVNS and SR-GCWS. Furthermore, the Multi-Start VND provides the lowest
gap among all selected metaheuristics, only beated by the SR-GCWS approach.
However, most of the higher gaps obtained with the proposed approach correspond
to some of the largest instances, whose results are not reported for the SR-GCWS
algorithm.

As a final remark, it can be observed that the lowest gap (−1.86%) corresponds
to the problem P-n55-k8, where a solution considering only seven vehicles (# routes)
has been obtained. Although the best known solution for this problem uses eight
vehicles, feasible solutions with seven vehicles and lower costs may be reached, as the
one obtained with this approach. However, if only seven vehicles are considered, the
Multi-Start VND has finished slightly over the value 580.96 (576 considering integer
costs), published for this problem in [1, 2, 20].

6 Scope and limitations of our approach

The described hybrid algorithm embeds CP and LR within the VND metaheuristics
framework by decomposing the CVRP into two subproblems concerning customers’
allocation and routing optimization separately. A fast and efficient algorithm such
as the RCWS is used to feed the multi-start scheme by generating good initial
solutions. Thus, the proposed optimization approach implements a flexible, efficient
and robust optimization algorithm able to deal with some realistic problems, which
means both the ability to tackle large instances and to represent real operational
constraints. The characteristics of the resulting algorithm can be explained in the
following way: flexibility involves the quality of the algorithm to be adapted to real
problems; efficiency is related to the easiness of the algorithm to obtain optimal or
quasi-optimal solutions in reasonable computation times; and robustness is related to
the fact that the algorithm performs well even when no extense fine-tuning processes
are carried out on its parameters.

Regarding flexibility, this approach benefits from the CP capabilities to model
different operational constraints. This constraints are present in most of the real
application cases and, in general, affect to the allocation decisions. CP, which is
not restricted by modeling limitations such as constraint linearity, facilitates the
representation of allocation constraints without requiring any specific action on
the solving method. Hence, the hybrid scheme can be easily adapted to different
CVRP variants by simply adding the allocation constraints which properly model
the feasible solutions of the problem. Since the VND optimization scheme is able to
reach feasible solutions starting from non-feasible initial solutions, e.g. not fulfilling
the maximum number of vehicles [19], the RCWS algorithm does not need to be
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modified in order to include operational constraints other than capacities. However,
other capacity-like constraints, such as total driving time of each route, can be
translated to a capacity constraint in order to obtain feasible solutions by means
of the RCWS algorithm. Additional operational constraints may be added to the
CP model, which will ensure solutions’ feasibility along the local search process.
Thus, this hybrid approach will be able to tackle complex instances related to real
application cases by adding little modifications into the problem modeling, but
neither into the optimization scheme nor algorithms.

The efficiency of the proposed algorithm is supported by the results presented
in the previous section. As discussed, the presented approach is able to match
the best known solutions for benchmark problems of different sizes in reasonable
computation times. The provided comparison proves that its efficiency is simi-
lar to other state-of-the-art metaheuristics, both in terms of time and solutions’
quality.

The robustness of the algorithm is a consequence of the light requirements for fine
tuning. The LR-based algorithm does not require any specific adjustment since all the
convergence parameters are self-tuned. The CP-based subproblem depends just on
the quality of the defined constraint model to properly describe the feasible solutions.
The RCWS does not require any adaptation either. Only the VND movements could
require different prioritization depending on the problem being solved in order to
get a better solution quality.

Facing other relevant VRP variants, such as those involving Pick-Up & Delivery
or Time-Windows, would imply the modification of the LR-based method (in
addition to the constraint model modification) and the implementation of new
neighborhoods in the VND metaheuristic. The RCWS-based algorithm should be
also adapted and would require a proof of its efficiency. Authors are currently
working on these new implementations.

7 Conclusions

This paper has presented a hybrid methodology which combines a randomized ver-
sion of the CWS heuristic with Constraint Programming and Lagrangian Relaxation
to efficiently solve CVRP instances. These techniques have been embedded into a
Multi-Start Variable Neighborhood Descent framework. According to the tests per-
formed, the proposed algorithm is competitive with state-of-the-art metaheuristics.

In the proposed approach, the CVRP has been decomposed into two separate
subproblems, where CP and LR techniques are combined to ensure capacity con-
straints fulfillment and calculate all involved routes. This approach allows reducing
the computation time during local search processes, since problems to be solved are
far less complex than the original CVRP. The randomized CWS algorithm is used
to quickly provide several “good” initial solutions to start the search in a multi-start
environment. This algorithm has shown to be an efficient alternative to other existing
approaches due to its capability to generate quasi-optimal solutions in a reasonable
time. In addition, it is a robust algorithm, since it is almost parameter-free and only
requires a light fine tuning. Finally, it should be noticed that due to its modular
design, the proposed approach is flexible and can be easily adapted to solve other
VRP with additional constraints or multi-criteria objective functions.
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