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Abstract

Airport ground operations are one of the main causes of late departures. Hence, reliable work plans for ground
support resources can help mitigate these delays while limiting the under-/over-utilization of equipment. In this
paper, we propose a stochastic approach for modeling the routing problems encountered during scheduling of
each activity. We embed Monte Carlo simulation within an optimization approach to assess solutions during the
search and guide the algorithm toward more robust schedules that account for resource cost. Actual flight arrival
data, random service, and travel times are used in the simulation process. Results prove that our method clearly
increases the robustness of the obtained schedules and the number of aircraft being handled within the planned
time. To further identify potential causes of delay, we propose a reliability analysis based on the study of survival
functions for each turnaround activity, combined with the dispersion of the resources’ arrival to the parking stand.

Keywords: ground support resources; ground handling planning; stochastic optimization; simulation-optimization; vehicle rout-
ing problem with time windows

1. Introduction

The future of the aviation sector relies on the development of a more solid foundation to better balance
customer demand with the limitations of airport capacity. As airport infrastructure cannot be sustainably
expanded at the same pace as demand growth (Gelhausen et al., 2013), it is only natural to resort to the
optimization of ground airport services and available resources.

Aircraft turnaround is a major cause of delayed takeoffs (Schmidt, 2017). Specialized support vehicles
and teams have to perform several interconnected services between the arrival and departure of an air-
craft. Numerous stakeholders are involved in the different operations, and each of them aims to optimize
their own resources while maximizing their benefits. In many cases, goals and decisions of each indi-
vidual may contradict. Thus, an optimal schedule for a specific type of resource can lead to delays for

∗Author to whom all correspondence should be addressed (e-mail: s.padron@tbs-education.fr).

1



dependent operations and affect the performance of the entire turnaround. Cooperation between these
partners, operational and from an optimization point of view, is key to enhance the utilization of the
ground equipment (Weiszer et al., 2015).

In a prior study (Padrón et al., 2016), we considered the simultaneous allocation of different han-
dling resources to regard the interactions between operations. We proposed a deterministic optimization
methodology that produced global schedules while modeling and independently solving the operation
of each type of resource as a vehicle routing problem with time windows (VRPTW). However, ground
handling services are inherently a stochastic process. Planned flight arrivals suffer from frequent devia-
tions, and operation durations can be affected by, for example, workers’ skills and mechanical failures.
Additionally, vehicle travel times are highly sensitive to congestion on the apron, which is shared by
multiple services, aircraft, and personnel.

This uncertainty is another important challenge to be overcome (Schmidt et al., 2016), but it is barely
considered in the handling optimization literature, nor in airport ground operations in general (Brownlee
et al., 2018; Ng et al., 2018). Most research studies use deterministic values to model the operations’
processing time (Al Bazi et al., 2016; Antonio et al., 2017), and only a small number of ground handling
optimization studies address the unpredictable environment encountered in airports. Deterministic times
are typically an optimistic estimate, so vehicle schedules are highly optimized but more likely to fail due
to disturbances. Furthermore, airlines have significantly reduced the time that their aircraft spend on the
ground between consecutive flights in an attempt to increase productivity. This implies that arrival delays
and perturbations can hardly be compensated with a buffer time, particularly in the case of short-haul
flights. The high cost of non-availability either imposes the use of redundant plans, generally with a high
level of lowly utilized resources, or leads to an excessive usage without the required maintenance time.
This situation results in costly and inefficient resource management for handling companies. Therefore,
explicitly considering the risk of perturbation while planning support services is crucial for improving
the reliability of operations and to increase on-time performance in airports.

In the present study, we define the stochastic ground support planning problem (SGSPP) to capture the
inherent variability of turnaround processes, and then we propose an efficient method to solve it. Each
type of support resource is scheduled using a stochastic VRPTW approach. Expected servicing and
travel times, which are assumed to follow known distributions, are used to design the routes. To solve
the SGSPP for the entire process, we extend the methodology introduced previously by Padrón et al.
(2016) to cover stochastic scenarios, defining a simulation-based optimization approach that accounts for
random service, traveling, and real aircraft arrival times. The proposed simulation-optimization approach
allows us: (i) to evaluate the reliability of the solutions found under real operational conditions; and, (ii)
to use this evaluation to provide feedback to the optimization algorithm and drive the search toward
more reliable global solutions with a better balance between resource performance and turnaround time.
Finally, we compare the results of our new approach with the results presented by Padrón et al. (2016)
to quantify the influence of using simulation to guide the optimization algorithm.

The remainder of this paper is structured as follows. Section 2 reviews the literature related to
turnaround scheduling under uncertainty and stochastic VRPTWs. The SGSPP is described and formu-
lated in Section 3, and then the detailed implementation of the simulation-based optimization approach
is presented in Section 4. The computational experiments used to validate the proposed methodology are
reported in Section 5. Finally, conclusions are summarized in Section 6.



2. Literature review

In this section, we present a review of the scientific literature related to planning support services under
variable conditions. First, we summarize studies that focused on modeling turnaround operations. Sec-
ond, we discuss existing works focusing on scheduling support resources addressing uncertainty. Finally,
we provide an overview of stochastic VRPTW approaches.

Different modeling and simulation techniques have been used to examine the turnaround process. Wu
and Caves (2004) present an aggregated approach based on Markov Chains and Monte Carlo simulation
(MCS) to investigate the importance of the available turnaround time to manage uncertainty. A more
detailed model is developed by Schultz et al. (2013), where statistical analysis of historical data is used
to better predict the turnaround time. Contrary to these studies wherein only one turnaround is examined,
works based on discrete event simulation (DES) consider several aircraft being handled simultaneously
(Norin et al., 2012). DES is also used by Bevilacqua et al. (2015) and Mota et al. (2017) to investigate the
turnaround performance under different operating conditions and airport layout configurations. Ip et al.
(2010) exploit agent technology to dynamically allocate handling resources. Activities are modeled as
a set of autonomous specialized agents that can collaborate to achieve global goals. For the interested
reader, Schmidt (2017) provides a comprehensive survey of the existing literature related to aircraft
turnaround modeling approaches.

Regarding the optimization of support resources, only few studies address uncertainty. Clausen (2011)
dynamically plans the transportation of connecting baggage by dividing the planning horizon into a set
of decision periods and solving a static problem for each of them. A greedy approach is introduced
to address the problem in two steps. First, the route is obtained using expected (mean) traveling times
that follow a normal distribution. Second, the route is tested with random travel times and bag arrival.
Diepen et al. (2013) generate robust schedules for passenger buses by maximizing the slack between two
consecutive visits in a route. The authors include a simulation study to evaluate the resulting planning
over perturbations. To assess the deterministic routing solutions for planning de-icing vehicles, Norin
et al. (2012) develop a DES model that represents various operations during the turnaround time to
examine their interaction. Findings prove that the performance of the global process is improved when
vehicles are planned using an optimization process accounting for these interactions.

The flow of vehicles and teams between different turnarounds is typically modeled as a determin-
istic VRPTW, which has been extensively investigated in the literature. To improve the robustness of
deterministic solutions, different stochastic variants of this problem have been proposed, including the
VRPTW with stochastic travel and service times (SVRPTW). However, addressing the SVRPTW is
computationally complex, particularly in the case of hard time windows, and has not been as extensively
studied as other classical stochastic routing problems. Kenyon and Morton (2003) solve the problem
exactly for a small number of scenarios, proposing a branch-and-cut algorithm to minimize the finish
time of the longest route and the probability of not meeting a given deadline. Taş et al. (2013) con-
sider a gamma distribution to model travel times in a VRPTW with soft time windows and deterministic
service times. A Tabu Search metaheuristic is applied to minimize the expected transportation and ser-
vice cost. Miranda et al. (2018) introduce a multi-objective approach considering transportation costs
and customer service levels. Service and traveling times follow a normal distribution that has been left-
truncated to avoid negative values. In a different approach, Li et al. (2010) apply Monte Carlo sampling
to compute the expected service and travel times as an average of the realizations of random variables.



Similarly , Kenyon and Morton (2003) use MCS embedded in a branch-and-cut scheme to solve the
VRPTW with stochastic travel times.

Simulation approaches have great flexibility, not only for modeling stochastic elements but also for
describing the ground handling system. However, when they are used as a standalone decision sup-
port tool, the quality of the achieved solution cannot be ensured. When simulation is combined with
optimization approaches, it is typically used to assess the optimal deterministic solution in stochastic
scenarios. To overcome these limitations, there is an increasing research interest in using simulation, not
only to evaluate solutions but also to guide the search process (Juan et al., 2015; Calvet et al., 2019; Raba
et al., 2020). As far as we know, this is the first study that plans different turnaround support services
simultaneously through an optimization approach that accounts for stochasticity. Thus, each activity is
scheduled by solving a SVRPTW. Then, simulation is enclosed in the stochastic optimization model to
obtain overall solutions that can increase the reliability of the designed plan.

3. Stochastic ground support planning problem (SGSPP)

Airline activities are generally based on a flight network structure wherein an aircraft performs a set
of successive flight legs over a period of time. Between two consecutive flight legs, different support
activities are performed at the aircraft, as shown in Figure 1.
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Fig. 1: Schedule of a standard turnaround at a gate. Critical operations are highlighted in red.

The main ground services are as follows: disembarking or deboarding (D), boarding (B), fueling (F),
catering (CA), cleaning (CL) services, potable water refilling (PW), toilet service (T), and unloading
(U) and loading baggage (L). The beginning of pushback (P) indicates that the turnaround has been



completed. Depending on the type of service requested by the airline, some activities are not performed,
or their duration might be shorter than the standard case. The planned time to complete a turnaround is
delimited by the scheduled time of arrival (STA) and the scheduled time of departure (STD). Specially
adapted ground resources are required to process each operation, and they move physically from one
aircraft to another to fulfil the tasks assigned. An available slot is allocated to complete each activity in a
manner that the existing precedence connections between the services are respected. The slot is not fixed
and can vary depending on the schedule of the dependent operations.

Under real conditions, the typical deterministic approach for planning ground operations cannot reflect
the inherent uncertainty of actual operations. To draw a more accurate representation of the problem, we
define the Stochastic ground support planning problem (SGSPP). In particular, uncertainty is considered
through modeling activity durations and travel times as random variables with a known probabilistic dis-
tribution. This is an extremely challenging stochastic optimization problem owing to different resources
involved and interdependencies between ground tasks. Applying classical stochastic-programming meth-
ods to model this problem will result in excessive computational time. Hence, we propose a simpler but
efficient approach to produce schedules robust enough in reasonable execution times.

In the proposed approach, the stochastic parameters of each SVRPTW are replaced by their expected
values, which is a common strategy applied in heuristic approaches (i.e., law of large numbers). The
distributions of the random variables are independent, but they are not identically distributed given that
its variability is proportional to the deterministic value. Therefore, the classical central limit theorem
cannot be applied in our problem. Moreover, a reliability criterion is introduced to assess the robustness
of the global ground schedule under stochastic scenarios.

3.1. Formulation

The following parameters and variables are used to model the problem:

Parameters and instance variables
T set of turnarounds
li type of service requested by turnaround i ∈ T —i.e., full or minimum service
mi aircraft model of i ∈ T

STAi scheduled start of i ∈ T
STDi scheduled end of i ∈ T

A set of standard activities for handling an aircraft
Ai subset of activities to be completed in i, which depends on the service type li, Ai ⊆ A
ξ̃ai

duration of activity a in turnaround i, which is a random variable following a known distribu-
tion. The mean depends on the aircraft model mi

qai
amount of supplies requested by activity a in turnaround i, which only applies to a subset of
activities (e.g., catering, fueling, toilet service, and potable water)

Pai
set of direct predecessors of activity a in i, which depends on the aircraft model mi

eai
, lai earliest and latest starting time at which the activity a can begin while still fulfilling the sched-

uled turnaround time of i
∆a set of positive parameters used to further restrict the time windows of activity a to reflect

operational rules applied by airlines during a turnaround



F set of types of resources (fleets) required to process the activities
af activity to be carried out by each fleet f ∈ F , af ∈ A
Tf subset of turnarounds where resources of type f are required to complete the activity af
Kf set of units of f available
Qf capacity of each unit of fleet f , which only applies to a subset of fleets
δ̃ij travel time between turnaround i and j (i, j ∈ T ), which is a continuous random variable δ̃ij =

δij + d̃ij , where d̃ij is a random delay following a non-negative distribution. The deterministic
travel time δij is considered as the minimum time required to travel between i and j

Decision variables
sai

starting time of activity a in a turnaround i
xijk routing decision variable, where xijk = 1 if an activity in turnaround j is performed immedi-

ately after turnaround i by resource k, and xijk = 0 otherwise
wi waiting time of a resource at turnaround i

Depending on the type of turnaround, some operations have narrower or restricted time windows
for specific tasks. For instance, wide-body aircraft typically require turnarounds of several hours, but
boarding of passengers can only start shortly before the STD. For these cases, we introduce the set of
parameters ∆a.

To ensure easier notation, we substitute a by the corresponding operation abbreviation; for example,
sPi

refers to the starting time of pushback for turnaround i. The time to start handling an operation is
delimited by eai and lai, which are computed using a constraint programming model using the following
constraints:

sai
≥ sbi + E(ξ̃bi) ∀a, b ∈ Ai : b ∈ Pai

, ∀i ∈ T (1)

sPi
≥ STDi −∆P ∀i ∈ T (2)

sBi
≥ STDi −∆B ∀i ∈ T (3)

sUi
≤ STAi + ∆U ∀i ∈ T (4)

sLi
+ E(ξ̃Li

) ≥ STDi −∆Le
∀i ∈ T (5)

sLi
≥ STDi −∆Ls

∀i ∈ T (6)

Expression (1) ensures that standard precedence restrictions between operations are satisfied. Con-
straint (2) prevents aircraft from being pushed back too early (e.g., earlier than 5 minutes before STD,
∆P = 5), regardless whether all other turnaround tasks have been completed. Constraint (3) ensures that
boarding does not start earlier than a defined time before departure, typically 30 minutes (∆B = 30).
With constraint (4) and (5), we guarantee that unloading and loading baggage activities are performed at
the start and end of a turnaround. That is, baggage unloading has to start at a maximum of ∆U minutes
after the arrival of the aircraft to the stand, according to its STA. Meanwhile, baggage loading must end
no earlier than ∆Le

minutes before STD. This operation can generally start 30–40 minutes before STD,
depending on the check-in closing time. Constraint (6) ensures that baggage loading does not start earlier
than ∆Ls

minutes before STD.



Airline and airport revenues are intrinsically linked and have a common interest in decreasing the
time aircraft remain on the ground to maximize aircraft utilization and the highest possible rotation of
stands. An important goal of handling companies is to service the aircraft at the earliest opportunity
to comply with their service-level agreements (SLAs). However, they also pursue the efficient use of
their resources, which can conflict with the minimum stopover time objective. We have modeled the
SGSPP regarding two optimization objectives: (i) minimizing the utilization cost of the involved support
resources, and (ii) minimizing the overall turnaround time. Supplying solutions with a tradeoff between
both criteria allows the user to choose the most satisfactory plan to be implemented.

The allocation of the required resources to process each activity is modeled through a SVRPTW
problem. To simplify the formulation of each SVRPTW, we establish T as the set of turnarounds to be
serviced by the type of resource f ∈ F . The special visit 0 represents the depot, and we denote the entire
set of nodes including it as T0 = 0∪T . If the vehicle arrives at the aircraft stand before its corresponding
time window opens, it will wait until ei to start the operation.

Traveling and waiting time of the used vehicles are considered to compute the utilization cost of the
resources. Moreover, the addition of a third argument (hi) is necessary to account for the incurred STD
violations in a stochastic case. Precedence restrictions between activities are hard constraints, at least
at a planning level. Given that expected durations, in general, are longer than in the deterministic case,
turnarounds might not finish within the scheduled time. This is particularly prevalent in stopovers with
a short buffer, typically observed in airlines with tight schedules (e.g., low-cost carriers).

The formulation of the SVRPTW related to each type of resource is based on the classical VRPTW
formulation (Cordeau et al., 2002). The objective function (7) aims to schedule resources in a manner
that the expected travel time, vehicle waiting time, and tardiness regarding the scheduled finish time of
the turnaround are minimized, where wj = max{ej − (si + E(ξ̃i) + E(δ̃ij)), 0}, and hi = max{sPi

−
STDi, 0}.

ut = min
∑
i,j∈T0

i 6=j

∑
k∈K

E(δ̃ij)xijk +
∑
i∈T

wi +
∑
i∈T

hi (7)

To maximize the resource utilization of the entire set of fleets (i.e., minimize their unproductive time),
we define the following:

UT = min
∑
f∈F

utf (8)

where each ut corresponds to the objective function (7) for each individual SVRPTW.
The minimization of the total time required to finish the ground support operations at each aircraft is

formulated according to the equation (9). It is calculated using the planned time to start the final service
(pushback) in the turnaround.

CT = min
∑
i∈T

sPi
(9)



As part of the assessment process performed in the experimental section (see Section 5), we compare
the results obtained by both the stochastic and the deterministic approach. In the case of the determin-
istic formulation, we replace the expected parameters with the corresponding deterministic value. That
is, E(ξ̃i) = ξi and E(δ̃ij) = δij , where ξi and δij are the deterministic service and traveling times,
respectively. Furthermore, the turnaround tardiness accounted by h in Equation (7) is equal to zero.

Finally, we define a reliability metric to help in the decision making in stochastic scenarios. We gen-
erate scenarios based on a sampling procedure of random variables; this is a common approach in the
context of stochastic programming. Schedules are updated considering these random times and the ac-
tual time of arrival (ATA), instead of the STA. The actual ending time of each turnaround is computed,
and the schedule incurs a penalty if at least one of the turnarounds is not completed on time within a
certain level of tolerance. The SGSPP aims to minimize the probability of the overall actual termination
time exceeding the STD by more than a specific threshold β:

min
∑
i∈N

P (A(sPi
) > STDi + β) (10)

To define the objective function under a discrete set of scenarios, we have followed the linear for-
mulation proposed by Adulyasak and Jaillet (2014). As we are interested in increasing the reliability of
ground plans, we have redefined the objective function as a maximization function. Let Ω be the set of
scenarios, each representing a joint realization of travel and service times. The variable θω is equal to
1 if all turnarounds i ∈ N in scenario ω ∈ Ω are completed on time, and it takes value 0 if at least
one turnaround in the scenario exceeds its STDi by more than a given threshold β. Thus, the objective
function can be redefined as follows:

r = max
1

|Ω|
∑
ω∈Ω

θω (11)

subject to:

sPiω ≤ STDi + β +M(1− θω) ∀i ∈ N, ∀ω ∈ Ω (12)

θω ∈ {0, 1} (13)

where the reliability of the ground support solution denoted by r is maximized. Expression (12) guar-
antees that θω takes value 1 if the punctuality of all turnarounds is respected in scenario ω; that is, the
pushback time of turnaround i in scenario ω (sPiω) does not exceed the defined punctuality threshold β.

4. Simulation-based optimization approach

Planning handling resources using expected traveling and service values introduces slack in the routes,
and this helps reduce the probability of having a knock-on effect when the same resources are used in
successive turnarounds. However, owing to the interconnections between SVRPTWs, the variability of
the entire solution is not exclusively dependent on individual problems; that is, it is not the sum of the



individual variability of each SVRPTW. Moreover, the time buffer to process an operation at each aircraft
is a key to not only prevent the delay of the turnaround but also manage the utilization of resources. This
buffer can be significantly reduced depending on how the other services are scheduled, since the routing
problems for the different tasks are mutually dependent. That is, scheduling an operation with maximum
slack to account for unforeseen events can result in tight plans for other operations.

To address the SGSPP by considering the impact of operation dependencies on the schedule devia-
tions, we propose a simulation-based optimization approach, which we call the Stochastic sequence iter-
ative method (SSIM). The SSIM extends the SIM approach (Padrón et al., 2016) to deal with stochastic
scenarios, iteratively combining optimization with simulation techniques to find a set of robust solutions
with a trade-off between the defined objectives (see Section 4.1). Initially, the SVRPTWs related to dif-
ferent operations in the turnaround are sequentially solved following an ordered list. Each SVRPTW
is solved by applying a Variable neighborhood search (VNS) approach (see Section 4.2) and consider-
ing the impact on the time windows of the dependent tasks. Subsequently, several simulation runs are
used to estimate the behavior of the schedules under realistic conditions (see Section 4.3). We define a
set of robustness metrics to evaluate the reliability of solutions. Through these metrics, the simulation
step automatically provides feedback to the search process and guides the SSIM toward more reliable
solutions.

4.1. Stochastic sequence iterative method (SSIM)

The SIM heuristic was developed for deterministically scheduling the entire set of ground fleets. In par-
ticular, scheduling different resources require solving multiple VRPTWs, one for each specific service
required. A bi-objective problem is regarded as a single-objective optimization problem; that is, only the
primary objective is optimized, and the secondary objective is measured through an optimal solution.
Approximations to the best trade-off between both objectives—UT and CT in this case, as per expres-
sions (8) and (9)—are found by altering the solving sequence of the different routing problems. A pure
optimization criterion is applied for accepting solutions: a solution is accepted if it improves the primary
or the secondary deterministic objective of the incumbent.

In contrast, simulation results are used in the SSIM to determine the solving sequence to be inspected.
Further, solutions are only accepted if their simulated average is better than the actual best value and
if they lead to more reliable solutions while improving them. That is, the acceptance criterion checks
the simulated average of the unproductive time UT (UT ) and the reliability r. Additionally, operations
are ordered in the solving sequence by the number of time window violations to reduce the impact of
the improvement of UT on reliability. Hence, the goal of the SSIM is not only to identify solutions that
reasonably cover the Pareto front but also show a better behavior under uncertainty. The CT objective
is implicitly considered when updating the ordered list of SVRPTWs. Thus, the simulated ending time
of the turnarounds CT is not directly optimized, but computed when a solution is stored. Algorithm 1
outlines the SSIM approach. To ensure consistency and facilitate the comparison between SSIM and the
previous SIM approach, we have used a similar notation to Padrón et al. (2016).

The ordered list to solve each SVRPTW is represented by the sequence S, which is defined as S =
B∪P∪R. P is the sub-problem related to the pushback activity,B is the set of SVRPTW sub-problems to
be solved prior to P , andR is the set of remaining sub-problems. The algorithm starts by first solving the



Algorithm 1: Stochastic sequence iterative method (SSIM)
Data: S: Ordered list to schedule the SVRPTWs related to the different fleets in F . setSolution: set of accepted solutions

1 S ← B ∪ {P} ∪R
2 B ← ∅
3 R← S \ {P}
4 bestsolution← obtCompleteSchedule(S)

5 bestsolution < r, ν̂f , UT >← simulate(bestsolution)

6 findBest← false
7 repeat
8 R′ ← rank (R) by decreasing ν̂f
9 S′ ← {P} ∪R′

10 currentSolution← obtCompleteSchedule(S′)

11 currentSolution < r, ν̂f , UT >← simulate(currentSolution)

12 if currentSolution.r > bestsolution.r then
13 if currentSolution.UT < bestsolution.UT then
14 findBest← true
15 end
16 S ← S′;
17 bestsolution← currentSolution

18 end
19 until findBest or currentSolution.r < bestsolution.r

20 add(bestsolution, setSolution)

21 repeat
22 l← max(R, ν̂f}) // determine the most critical activity with respect to ν̂f
23 B ← add(l, B) // insert the most critical activity in the first position of S

24 R← remove(l, R)

25 S ← B ∪ {P} ∪R
26 currentSolution← obtCompleteSchedule(S)

27 currentSolution < r, ν̂f , UT >← simulate(currentSolution)

28 findBest← false
29 if curentSolution.UT < bestsolution.UT or currentSolution.r > bestsolution.r then
30 if currentSolution.UT < bestsolution.UT and currentSolution.r > bestsolution.r then
31 findBest← true
32 end
33 bestsolution← currentSolution
34 add(bestsolution, solutionSet)

35 end
36 if not findBest then
37 repeat
38 B′ ← rank (B) by decreasing ν̂f
39 R′ ← rank (R) by decreasing ν̂f
40 S′ ← B′ ∪ {P} ∪R′
41 currentSolution← obtCompleteSchedule(FL′)

42 currentSolution < r, ν̂f , UT >← simulate(currentSolution)

43 if currentSolution.UT < bestsolution.UT or currentSolution.r > bestsolution.r then
44 if currentSolution.UT < bestsolution.UT and currentSolution.r > bestsolution.r then
45 findBest← true
46 end
47 S ← S′

48 bestsolution← currentSolution

49 add(bestsolution, solutionSet)

50 end
51 until findBest or currentSolution.r < bestsolution.r

52 end
53 until B = S \ {P}
54 return solutionSet



routing problem associated to P , aiming at scheduling turnarounds to be finished at the earliest possible
time (i.e., the lowest CT value). This reduces the available slot to perform other services, which can
lead to having lower rates of resource utilization (i.e., higher values of UT ). In general, the waiting time
of the vehicles tends to increase when the tolerance to perform activities is low, which consequently
contributes to the robustness of the solution. Therefore, the simulation process is executed to evaluate
the solution found, and the sub-problems in R are ranked by decreasing order in terms of time window
violations νf . The new sequence is accepted if it is able to produce a more reliable solution that also
improves UT . Otherwise, the process is run again to explore different scheduling lists if at least the
reliability is increased. Hence, the computational effort of the heuristic is reduced without affecting the
robustness of the objective.

As not all operations are required to be performed at all aircraft, the number of turnarounds depends
on the specific sub-problem. To account for this characteristic, we normalize νf according to the number
of turnarounds present in the SVRPTW sub-problem:

ν̂f =
νf
|Nf |

(14)

In the following step, the sub-problem in R with the worst value of ν̂f is selected at each iteration
to be solved before P . When performing this, the availability for processing the activity is expanded,
and better solutions in terms of fleet utilization are achieved as more visits are generally assigned to
each route. Although decreases in unproductive time might also lead to less reliable plans, reliability
can still be preferred when the operation that is more likely to produce delays is planned before solving
P . Scheduling P first has the effect of packing tasks in a smaller time window, aiming to minimize the
termination time of the turnaround. This reduces the margin to complete services later than scheduled
without affecting successive activities. That is, if the duration of a task is longer than expected, this
activity is more likely to delay the beginning of subsequent operations. Thus, solving first the least
robust operation can reduce UT while affecting reliability the least.

Keeping the same position of P in S, the process is executed until UT is reduced by a more reliable
solution, or until reliability cannot be further improved. Otherwise, sub-problems in B and R are ranked
again by ν̂f to increase resource utilization with the lowest impact on reliability. The algorithm stops
when all sub-problems have been planned before P (i.e., B = S \ {P} and R = ∅), and no further im-
provement can be obtained in terms of reliability or UT . The SSIM returns the accepted non-dominated
solutions as an approximation of the Pareto set.

4.2. Solution method for the VRPTW

Each SVRPTW is solved using a VNS approach (Mladenovic and Hansen, 1997), combined with the
I1 heuristic (Solomon, 1987) to obtain an initial solution. Although the performance of the constraint
programming-based method used by Padrón et al. (2016) was later improved (Padrón and Guimarans,
2019), VNS turned out to be more efficient in solving the stochastic version of this problem.

VNS is a metaheuristic that has proved to be very effective both for classical VRP problems and VRP
variants, including real-world constraints. One of the main advantages of VNS with respect to other



metaheuristics is the fact that the basic versions of VNS and their extensions have few parameters and
only require simple adjustments. VNS is based on the principle of systematically changing the used
neighborhoods both in the exploration phase (i.e., local search) to find a local optimum and perturbation
phase (shaking) used to escape from the local minimum. In our study, we have implemented a general
VNS algorithm (Hansen et al., 2010), which uses variable neighborhood descent (VND) as a local search
process.

After obtaining the initial solution using I1, the process starts by perturbing this solution in the shaking
step. The first neighborhood operator is used to move to a random solution in the vicinity. Then, the
VND local search process is applied. Considering the first search neighborhood, the algorithm explores
the neighboring search space of the current solution to obtain a local optimum. If the solution cannot
be improved, the algorithm moves to the next neighborhood. Otherwise, whenever a better solution is
found, the search process is restarted from the first neighborhood. At the end of the exploration phase,
when all neighborhoods have been explored, and the solution cannot be further improved (i.e., the current
solution is a local minimum with respect to all defined neighborhoods), this result is compared with the
best solution found thus far. If the obtained solution improves the incumbent, the search restarts from the
first shaking neighborhood. Otherwise, the algorithm proceeds with the next neighborhood. The process
is repeated until the algorithm reaches the defined stopping criterion.

Five types of neighborhoods (operators) are used in the shaking phase, which exploits inter- and intra-
route movements: Relocate, Swap, Or-opt, 2-Exchange, and the general CROSS exchange (Taillard et al.,
1991). First, a simple Relocate operator is applied, where only one turnaround is removed and inserted
in another route. In Swap, the position of two turnarounds from two different routes are interchanged,
Or-opt consists of moving a chain of visits to another route, and CROSS interchanges two sequences of
visits with different lengths from two different routes. In addition, 2-Exchange is a special case of the
CROSS method where the length of the sequences is limited to two. For all the operators, the route(s), as
well as the visit (segment) to be relocated (swapped), are chosen randomly, and the process is executed
many times. The same sequences of operators are considered for the exploration step, where only one
of the routes and its visits—in the case of Swap—are selected randomly. Moreover, the Relocate and
Or-opt operators are generalized to consider single- and multi-route movements during the local search
process. That is, the turnaround(s) can be transferred to another location in the same route or to another
route, depending on the quality of the obtained solution.

In addition, we have implemented the route minimization heuristic proposed by Ferreira et al. (2018).
This procedure aims to decrease the number of routes required in the initial solution before the fleet
utilization is further improved by the VNS algorithm. Although the number of resources mobilized
is not explicitly minimized, savings in handling equipment is a key issue in terms of acquisition and
maintenance costs. Two procedures are executed in this heuristic. First, a route-elimination process is
performed to move customers out of one route and into another, starting with the route which has the
fewest customers. Inter-route Relocation and Swap movements are continuously applied until the current
route is empty or until a maximum number of iterations is reached. In the latter case, a perturbation phase
is launched over the remaining routes considering the five neighborhoods defined in the VNS method.
The route elimination process is performed again by finding successful moves in the modified solution.
If the route cannot be emptied, the entire process is repeated with the next route. The process stops
whenever no route is removed after a preset number of rounds.



4.3. Simulation procedure

We use an MCS sampling-based approach to generate the stochastic scenarios. Using the simulated travel
and service durations, as well as the ATA, we update the starting time of all the required operations in
each turnaround. Two conditions must be satisfied to start an operation: (i) the vehicle scheduled to carry
out the operation must be available at the associated parking position, and (ii) the precedent activities in
the turnaround should have been completed.

The variability of ground services can delay operations in a single aircraft or have a knock-on conse-
quence because vehicles are shared between turnarounds. Suppose that there are two successive activities
to be performed within the same turnaround. If the duration of the first activity is longer than expected,
the second task can be delayed. This situation can affect not only the punctuality of this turnaround, but
the delay can also be propagated through subsequent turnarounds. If the team performing the second
operation has to wait until the first task is finished, this could delay the next assignment in another air-
craft, as well as the completion of the next turnaround. A similar situation is encountered if the resource
does not arrive on time because the trip between turnarounds took longer than expected. Therefore, we
consider this delay propagation when updating the schedules in each scenario. Algorithm 2 provides the
main steps of the procedure.

For each scenario, we calculate the actual time windows of the activities and the minimum time to
process the turnaround under actual conditions (i.e., A(sPi)). To guarantee that precedence restrictions
are fulfilled, we verify if the scheduled starting time of each activity is within their actual time windows.
If it is earlier than the actual earliest time, the operation is delayed to fall within the window. On the
other hand, a later actual start regarding the latest scheduled start time implies a delayed turnaround. In
this case, the stop time is relaxed and A(sPi) is updated. The routes associated with each fleet are also
changed considering the actual servicing, travel times, and the associated time windows. If the updated
starting time of one operation exceeds the latest start time —i.e., there is a time window violation—, the
procedure is launched again to ensure feasibility if a knock-on effect occurs.

Finally, we use A(sPi) to compute the reliability of the solution as the percentage of scenarios in
which all turnarounds finish on time within different tolerance thresholds. Additionally, the simulation
procedure returns the normalized number of time window violations per operation ν̂f , that is, the number
of times that the actual start time exceeds the scheduled latest starting time of each task over the number
of turnarounds where this operation is required. As discussed previously, the latter is used by the SSIM
to rank the operations to be scheduled before P in the solving sequence, actively feeding back simulation
results to the optimization process and helping guide the search.

5. Computer experiments

The SGSPP approach has been tested using real flight data from a ground service provider in Barcelona-
El Prat (BCN) and Palma de Mallorca (PMI) airports (Padrón et al., 2016). Additionally, the prece-
dence constraints between activities and deterministic durations are established according to each aircraft
model. We also modeled two types of services, namely, full or minimum service, where the minimum
service is typically provided to low-cost carriers. To test this approach, we used a set of 5 eight-hour
schedules with different numbers of turnaround and operations to be handled. Each instance is tested



Algorithm 2: Simulation procedure
Data: E(s̃ai), a ∈ A, i ∈ T : set of planned start times. Rf : set of routes (vehicles) required for operation (type of fleet) f ∈ F . Rkf :

set of turnarounds to be served by vehicle k of type f . xijk: routing decision variable.
1 foreach ω ∈ Ω do
2 saiω ← sai

3 < ξaiω , δijω >← Generate < ξ̃ai, δ̃ij >

4 Calculate < eaiω , laiω >
5 Calculate A(sPiω)

6 repeat
7 violation← false
8 foreach a′ ∈ A do // Update operation schedules per plane

9 foreach j ∈ T do
10 if sa′jω < ea′jω then
11 sa′jω ← ea′jω
12 violation← true
13 else if sa′jω > la′jω then
14 violation← true
15 end
16 if violation then
17 Update < eaiω , laiω > // update the actual time windows of all the tasks

18 Update A(sPiω)

19 end
20 end
21 end
22 foreach k ∈ Rf do // Update operation schedules per route

23 foreach i, j ∈ Rkf do
24 if xijk == 1 then
25 sajω ← max{eajω , saiω + ξaiω + δijω}
26 if sajω > lajω then
27 violation← true
28 end
29 end
30 end
31 end
32 until not violation
33 computeStatistics(< rω , ν̂fω >)

34 end
35 r←

∑
ω∈Ω rω/|Ω|

36 ν̂f ←
∑

ω∈Ω ν̂fω/|Ω|
37 return < r, ν̂f >

under two degrees of uncertainty: high variability (HV) and low variability (LV). Thus, we define a total
of 10 instances, which are identified according to the following convention: AirportxLVyyy-zzz, where x
is the number of the instance, yyy is the number of scheduled turnarounds, and zzz is the total number of
operations to be processed.

We perform three different tests to validate our approach. First, we measure the behavior of the de-
terministic schedules in stochastic scenarios. Second, the SIM algorithm is applied using expected times
to address each VRPTW problem. In this case, simulation is only used to assess the final solutions, and
is not used during the search process. Finally, we solve the SGSPP by applying the SSIM to improve
the reliability of the proposed solutions. We compare the results obtained with the SIM and the SSIM to



analyze the impact of using simulation to guide the search.
A standard personal computer, Intel Core i5 processor at 2.3GHz and 4GB RAM, was used to run

all the experiments. The optimization and simulation processes have been developed in Java and the
ECLiPSe CP platform.

5.1. Parameter settings

To obtain the random service times, we apply an asymmetric triangular distribution (min, µ,max),
whose peak value corresponds to the deterministic (or the expected) duration. We use this distribution
owing to the difficulty in obtaining comprehensive data regarding ground operations (Al Bazi et al.,
2016). The parameters have been set to (min = µ − 1, µ,max = µ + µ ∗ ζ), where the ζ value is
set to 0.25 or 0.5 under LV or HV, respectively. The stochastic delay in traveling times d̃ij is modeled
using a log-normal distribution (µ, σ), as it is a suitable representation of positive random values (Juan
et al., 2011; Guimarans et al., 2018; Raba et al., 2020). The deterministic time δij has been calculated
considering the maximum speed of vehicles moving on the apron (30 km/h). The log-normal function is
defined as µ = 0, and σ = 0.25 or σ = 0.5, depending on the variability.

We generate 1000 scenarios using MCS. We use the ATA, instead of the STA. However, we only
consider the case in which the deviation from the STA is below 15 minutes. That is, the goal of the
methodology is to improve the robustness of the schedules in the case of small perturbations and not
disrupted scenarios.

The expected times used to solve the SGSPP were calculated using the first moment of the corre-
sponding distribution. The expected traveling time delay is defined as E(δ̃ij) = δij + E(d̃ij), where
E(d̃ij) = exp(µ+ σ2/2). The expected duration is set to E(ξ̃ai) = (min+ µ+max)/3.

5.2. Evaluation of deterministic Pareto solutions

The Pareto deterministic solutions obtained by the SIM method, as well as the simulations results, are
provided in Table 1. For each solution, we include: the total vehicle waiting time (w) and the traveling
time (δ) that correspond to the objective value (UT ) and the total turnaround time (CT ). For the stochas-
tic scenarios, we present the average values of the objectives (w, δ, and UT ), and the reliability of the
solutions (r15) imposing a threshold β = 15, given that in practice a turnaround is considered late if it is
delayed by more than 15 minutes.

As shown in the figures, the reliability of almost all the obtained solutions is zero. As routes are highly
optimized to reduce vehicles’ idle time and turnaround duration, delays caused by longer-than-scheduled
services and traveling times can barely be absorbed. Additional metrics have also been recorded for an
in-depth investigation of the obtained results, such as the average delay per late turnaround (D) and the
proportion of turnarounds that have been completed on time with 95% confidence (OT15). To compute
the former, we divide the total delay incurred per simulation by the number of delayed turnarounds.
For example, 21% of turnarounds in the instance PMI1 departed on time—with 95% confidence—in a
scenario with high variability where solution 2 is deployed, with an average of 23.34 minutes of delay
per late turnaround. This type of information can be applied by ground handlers to select the appropriate



schedule to implement, which can have an important effect on their operations. The cost impact asso-
ciated with a late departure is set per minute, and it is generally included in the SLAs between ground
handlers and airlines.

Table 1: Deterministic non-dominated solutions and simulation results for PMI and BCN instances.

Deterministic solutions Stochastic scenario (LV) Stochastic scenario (HV)

Inst N w δ CT #V w δ CT r15 D OT15 w δ CT r15 D OT15

PMI1

1 215 52 1735 41 304.82 399.25 2246.06 0 18.09 0.93 300.30 432.78 2452.61 0 20.37 0.62

42 336

2 200 48 1743 41 322.33 394.92 2453.35 0 19.80 0.60 324.14 429.06 2700.02 0 23.34 0.21
3 210 50 1742 42 279.09 396.93 2379.13 0 19.50 0.62 285.77 431.31 2560.93 0 23.20 0.50
4 184 50 1747 43 346.39 396.92 2429.95 0 19.46 0.67 363.78 430.76 2651.22 0 23.43 0.38
5 147 46 1764 45 307.71 392.92 2396.61 0 18.57 0.76 318.99 427.14 2558.84 0 19.75 0.40
6 158 47 1760 42 317.68 393.43 2588.66 0 22.44 0.55 313.12 426.81 2785.00 0 25.39 0.26

PMI2

1 5780 95 3256 39 5414.08 764.53 4179.47 0 20.11 0.73 5256.57 830.87 4516.08 0 24.84 0.60

83 649

2 5358 96 3261 39 5040.72 765.98 4253.09 0 21.10 0.67 4879.51 832.17 4598.17 0 25.81 0.58
3 5110 101 3267 38 4837.93 770.72 4398.33 0 25.63 0.71 4699.15 837.18 4781.81 0 28.62 0.53
4 5045 98 3313 38 4794.3 767.98 4233.99 0 20.10 0.67 4677.36 833.86 4633.66 0 24.81 0.51
5 4862 97 3347 40 4579.06 766.43 4215.24 0 18.00 0.80 4472.86 832.44 4585.80 0 21.52 0.54

PMI3

1 2335 63 2545 39 1884.05 587.17 3266.56 0 17.89 0.80 1760.56 638.72 3627.07 0 20.61 0.50

64 508

2 2236 63 2548 39 1837.83 587.55 3378.92 0 19.50 0.61 1716.74 638.76 3751.56 0 23.81 0.44
3 2162 64 2554 40 1801.42 587.90 3289.72 0 17.86 0.83 1668.53 639.45 3622.73 0 20.75 0.44
4 2091 64 2573 39 1733.72 588.33 3326.61 0 19.47 0.78 1618.62 639.15 3654.38 0 22.32 0.58
5 2102 65 2569 39 1729.31 588.88 3235.27 0 17.05 0.86 1602.75 641.15 3574.52 0 20.26 0.53
6 2042 65 2585 38 1709.77 589.47 3354.92 0 17.81 0.72 1594.77 640.57 3787.41 0 23.34 0.45

BCN1

1 3384 700 2942 35 3047.1 1160.6 3627.67 0 18.39 0.80 2931.66 1205.44 3861.20 0 20.93 0.63

56 446

2 3058 732 2954 35 2730.32 1192.34 3664.81 0 19.26 0.82 2615.45 1237.46 3886.14 0 21.10 0.63
3 2919 682 2965 35 2673.46 1141.93 3800.04 0 19.78 0.63 2582.16 1187.41 4087.80 0 23.97 0.46
4 2900 679 2990 32 2577.35 1139.26 3644.25 0 18.78 0.84 2447.98 1185.16 3867.66 0 21.17 0.63
5 2872 684 3006 32 2578.15 1144.02 3746.14 0 19.83 0.71 2455.58 1189.70 3950.78 0 22.07 0.54

BCN2

1 1369 382 1842 29 1223.56 672.74 2222.47 0 17.94 0.89 1161.21 701.5 2349.98 0 19.51 0.73

37 282

2 1282 381 1850 29 1102.53 671.50 2137.60 0.33 10.47 0.97 1036.78 700.21 2229.16 0 17.10 0.89
3 1234 381 1853 27 1039.33 672.43 2117.14 0.21 12.82 0.95 957.21 700.47 2203.85 0.004 17.80 0.95
4 1252 388 1851 28 1093.23 679.21 2249.71 0 18.24 0.78 1026.74 707.69 2392.49 0 21.27 0.70
5 1174 372 1859 31 1040.33 662.53 2151.73 0.10 14.84 0.97 993.93 691.27 2255.17 0.001 16.87 0.86
6 1201 392 1854 29 1057.91 683.52 2211.46 0 18.30 0.89 994.24 712.29 2367.14 0 20.73 0.70

TheOT15 metric is particularly useful for determining potential causes of delay when solutions’ relia-
bility is very low. According to the reliability criterion, if at least one turnaround does not finish on time
in a scenario, the solution is considered not reliable for this scenario. Therefore, we cannot differentiate
between a plan where most of the turnarounds were late and one where only one turnaround was delayed.

Additionally, we use the survival functions of turnaround activities and the dispersion on the arrival of
vehicles to the respective parking stand to further analyze our scheduling. Figure 2 provides an example
of survival analysis for the turnaround 24 in solution 5 of the PMI1 instance with high variability (see
Table 1). The aircraft arrives to the parking position 7 minutes later than the STA (365), and is pushed
back more than 15 minutes later than the STD (410). The overdue aircraft arrival delayed the beginning
of operations and has a notable impact in the most constrained services, such as cleaning. Moreover, late
arrivals of vehicles due to longer service and traveling times is an important cause of delays. In this case,
the aircraft departure is particularly affected by a delayed pushback vehicle. Given that the pushback
is a short activity, the deterministic schedule consists of a small number of vehicles handling several
turnarounds. This makes the routes very sensitive to perturbations, increasing the probability of delay
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Fig. 2: Survival analysis of a delayed turnaround in the deterministic solution 4 of the PMI1 instance
with high variability, including the dispersion of arrival of vehicles.

propagation between consecutive turnarounds.

5.3. Evaluation of SIM and SSIM expected solutions

Tables 2 and 3 outline all the solutions found with SIM when the expected travel and duration times
are used, rather than the corresponding deterministic values. Tables 2 and 3 also present the equivalent
results for the application of the SSIM. Since different trade-off solutions are obtained by each method,
we have selected one solution per each under high variability for further comparison (see Section 5.3.1).

The solutions’ robustness has clearly improved (c.f. Table 1), and delays caused by variability in the
system are significantly reduced. As the reliability and the number of timely turnarounds are similar
across solutions, considering a 15-minute tolerance, we include on-time statistics using other thresholds,
such asOT5 andOT0 for 5 and 0 minutes, respectively. Thus, the two schedules with similar performance
can be compared.

Unlike the deterministic solutions, the schedules obtained when using expected values present higher
vehicle waiting times. Although resource utilization is an important objective for ground handlers, the
additional margin in the routing plan improves reliability and makes the schedules more suitable for
realistic conditions. However, SIM searches for global solutions that minimize the overall deterministic
objectives, which does not necessarily imply a better performance for the stochastic problem. In contrast,
simulated unproductive times and different levels of reliability (15, 5, and 0 minutes) are examined in
the acceptance criterion of the SSIM. That is, if two schedules have the same value of r15, the algorithm
will check whether r5 or r0 has been improved to make a decision.



The SSIM is able to obtain better results in terms of reliability for most instances with equivalent or,
in some cases, with a significant decrease of actual vehicle waiting times. In problems such as PMI1 (LV
and HV), PMI2LV, and BCN1LV, most solutions found with the SSIM are 100% reliable. In the case
of PMI2HV and BCN2HV, incurred delays are significantly reduced. In other instances, r15 is similar.
However, a higher number of aircraft left the parking position at the STD or within 5 minutes with lower
values of waiting times (e.g., BCN2LV).

The simulated finishing time of the turnarounds is lower in most of the SSIM solutions, particularly
in the case of LV scenarios. Under low variability, the slack created as a result of using expected values
is logically smaller compared with HV scenarios. Moreover, the expected idle time of the obtained
schedules is minimized with SIM, which generally leads to a worse performance. In contrast, more robust
solutions are preferred in the SSIM, keeping a certain level of waiting time to absorb some variability,
which consequently enhances the punctuality of the turnarounds. Meanwhile, the simulated unproductive
time is lower in a few SIM solutions, but at the expense of lower reliability.

Regarding the performance of the different trade-off SSIM solutions, longer expected idle times gen-
erally produce solutions with shorter turnaround times when deployed in scenarios with uncertainty. The
shortest expected turnaround duration does not necessarily correspond to the shortest simulated one.
To reduce the turnaround time, the available time slots to perform each activity are highly constrained,
affecting the system’s capability to absorb perturbations. Thus, the shortest actual completion times
typically result in the highest number of earlier departures, despite the fact that the schedules are not
always the most reliable. For example, solution 1 for the PMI2HV instance has the shortest turnaround
makespan and the best values of OT5 and OT0, but is less robust than solution 4. Regarding the waiting
time, although reduced slack can still yield good results in terms of r15, these solutions tend to present
a less robust behavior. In instances such as PMI1LV, all turnarounds in solution 5 are on time within
15 minutes of STD, but only 76% and 36% of them are completed within 5 minutes and at STD, re-
spectively. This implies that these solutions might be more sensitive to small additional perturbations,
leading to an increasing number of delays and late departures.

Table 4 provides information about routing results according to the service type for each SSIM solu-
tion. Cl, U, L, and P activities employ uncapacitated trucks wherein the number of turnarounds that can
be performed is unlimited. The capacity of the resources required to process activities T and PW is set to
1000 L, whereas Ca and F vehicles can contain up to 2000 and 100,000 L of supplies. When the capacity
of a truck is exceeded, it must return to the depot to refill or empty the tanks before proceeding with the
next assignment. The average number of activities processed per route (#A) and the average number of
refilling/empty (#R/E) steps per route are included. To ensure time is balanced among routes, the total
service duration of a route cannot be lower than 80% of the total average duration.

Finally, we revisit turnaround 24 from instance PMI1HV to visually analyze how solutions from the
SIM and the SSIM alter the execution of the turnaround, as depicted in Figure 3. As observed, the margin
created when using expected times to build the routes results in earlier arrivals of the vehicles, narrower
operation survival functions, and a quicker turnaround. In the case of the SIM solution (Figure 3a), the
robustness of the schedule has been improved. This turnaround is not considered late, but it exceeds the
STD by more than 5 minutes. Late pushback vehicles remain the primary cause of this delayed departure,
which is practically eliminated by the SSIM solution (Figure 3b) using more resources or scheduling
vehicles to arrive earlier, as in this case. Both SIM and SSIM solutions have similar waiting times and
comparable solving sequences, given that the pushback is planned in the same position. However, the



difference regarding the order of certain activities shows how the sequence in which operations are
planned can have a major effect on reliability.

5.3.1. Comparison of the SIM and SSIM solutions according to turnaround tardiness
Our approach actively employs MCS in a closed loop. The randomness of the stochastic variables is
exploited to guide the exploration of the sequences and lead the algorithm to produce solutions with
the expected characteristics. The operations which are delayed the most are inserted in the first places
of the sequence to schedule them with a larger margin, thus reducing the risk of affecting successive
tasks. Moreover, the reliability of the solutions is considered to select the sequences to be explored. This
prevents the algorithm from going toward better solutions with respect to the expected values, rather than
more robust solutions in random scenarios.

When the traveling time variability is quite high, a higher number of resources can be required. How-
ever, the type of distribution used to model variability offers some protection as it is asymmetric and
“skewed to the right” (i.e., lognormal). If the duration of the tasks is highly variable, there is a risk of
turnaround violation—when a turnaround does not finish within the scheduled time—even when us-
ing dedicated resources. Turnaround parameters are inputs generally set a few months (flight times) or
weeks (assignment of aircraft to sets of flights) in advance. Given that flight schedules are, in general,
very tight, there is no other option than relaxing the time windows of the operations even when using
deterministic values. Thus, solutions are never infeasible during the day of operation but incur delays.
During planning time, schedules produced by the algorithm can become infeasible if we impose hard
constraints. Nevertheless, they can reduce the overdue turnarounds during the day of operation, which is
the most critical objective.

We have included a comparison between solutions obtained through open-loop and closed-loop sim-
ulation (i.e., SIM vs SSIM) considering the turnaround tardiness. For each scenario, we have calculated
the total amount of time that the actual finish time of each turnaround exceeds the STD. We have selected
one solution per method under high variability to provide a clear and fair comparative analysis: (i) the
SSIM solution with the highest reliability and the lowest waiting times in the case of solutions equally
reliable, and (ii) the SIM solution with the closest values of waiting times to the chosen SSIM solution.
Selected solutions are highlighted in bold in Tables 2 and 3. Simulated tardiness for the set of instances
under high variability are depicted in Figure 4. As expected, we observe a significant reduction of delays
reached by the SSIM solutions, and a lower dispersion of delays, especially noticeable for the BCN2HV
and PMI1HV instances.



Turnaround 24

U
L

Cl
Ca

F
PW

T
P

375 400 425

Time (min)

O
pe

ra
tio

n

Vehicles Arrival

0.00

0.25

0.50

0.75

1.00

375 400 425

Time (min)

S
ur

vi
va

l P
ro

ba
bi

lit
y

Survival function operations

Operation Deboard
Board

BaggageUL
BaggageL

Cleaning
Catering

Fueling
Water

Toilet
Pushback
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Fig. 3: Survival analysis of turnaround 24 in (a) SIM solution and (b) SSIM solution for the PMI1HV
instance, including the dispersion of arrival of vehicles.



Table 2: Non-dominated solutions found with SIM (using expected values) and SSIM, and their simulation results for the PMI
instances. Solutions selected for further comparison are highlighted in bold.

SIM. Expected values Stochastic scenario SSIM Stochastic scenario

Instance N w δ h CT #V w δ CT r15 D OT5 OT0 w δ h CT #V w δ CT r15 D OT5 OT0

PMI1LV 1 337 483 41 1731 51 606 399 1905 1 0 0.80 0.54 383 480 41 1740 51 611 396 1881 1 0 0.81 0.55

42 336 2 289 478 58 1752 48 612 394 2071 0.27 11.35 0.57 0.09 259 479 60 1762 50 558 394 1910 1 0 0.86 0.50
3 253 480 52 1769 49 551 395 2083 0.32 10.63 0.57 0.21 253 480 55 1779 53 526 395 1908 1 0 0.88 0.48
4 224 481 55 1773 48 533 396 2071 0.32 10.59 0.52 0.11 255 480 47 1779 47 512 395 1957 1 0 0.83 0.33
5 212 481 58 1779 49 515 396 2040 0.32 10.59 0.59 0.23 258 478 50 1797 51 503 393 1966 1 0 0.76 0.36

T(s) 2760.56 6169.57

PMI1HV 1 432 531 114 1786 58 780 433 1896 0.99 0.02 0.88 0.54 446 528 120 1786 57 795 430 1900 1 0 0.90 0.48

42 336 2 378 529 89 1798 55 729 431 2000 0.81 3.03 0.64 0.26 406 530 116 1785 59 744 432 1909 1 0 0.9 0.5
3 312 527 83 1814 58 679 428 1986 0.12 14.37 0.73 0.35 330 527 119 1816 54 681 429 1907 1 0 0.83 0.48
4 288 529 85 1838 54 635 431 1989 0.1 14.71 0.71 0.4 302 530 129 1830 54 641 432 1921 1 0 0.79 0.55
5 278 524 87 1849 56 661 426 2033 0.94 0.87 0.57 0.16 286 527 135 1835 53 624 429 1945 1 0 0.79 0.40

T(s) 2532.18 6291.24

PMI2LV

1 5815 931 83 3277 47 6317 767 3567 1 0 0.75 0.42 5806 929 77 3277 47 6312 765 3507 1 0 0.81 0.48

83 649

2 5605 929 91 3310 46 6101 766 3644 0.99 0.06 0.66 0.37 5652 933 77 3273 49 6164 769 3536 1 0 0.80 0.43
3 5319 936 81 3313 45 5856 772 3642 0.89 1.69 0.68 0.36 5560 932 79 3327 47 6052 768 3562 1 0 0.75 0.46
4 5274 929 83 3318 45 5812 766 3648 0.83 2.55 0.72 0.33 5381 934 80 3330 48 5875 770 3552 1 0 0.71 0.42
5 5037 929 79 3337 46 5584 765 3708 0.96 0.58 0.59 0.26 5070 932 79 3375 43 5573 768 3688 0.99 0.015 0.64 0.31

5152 929 87 3365 48 5668 766 3605 1 0 0.69 0.45
T(s) 5843.38 14934.68

PMI2HV 1 6126 1024 191 3368 49 6895 836 3635 0.37 9.94 0.72 0.38 6389 1021 192 3372 48 7114 832 3516 0.88 1.40 0.80 0.55

83 649 2 5704 1024 154 3389 45 6497 835 3597 0.54 7.26 0.73 0.38 5822 1022 180 3399 50 6554 834 3530 0.90 1.63 0.80 0.48
3 5561 1024 201 3409 51 6332 835 3584 0.64 5.66 0.75 0.43 5466 1021 187 3423 48 6253 832 3586 0.93 1.14 0.73 0.46
4 5514 1022 129 3418 48 6280 833 3594 0.55 7.06 0.77 0.45 5418 1022 200 3462 47 6181 832 3621 0.96 0.85 0.70 0.40
5 5106 1028 192 3450 49 5915 839 3633 0.55 7.04 0.72 0.36 5296 1021 187 3462 49 6079 832 3646 0.94 0.93 0.67 0.36

5240 1021 187 3462 48 6023 833 3652 0.83 2.60 0.65 0.41
T(s) 6728.74 15172.79

PMI3LV 1 2560 715 58 2551 51 2886 587 2750 0.99 0.02 0.81 0.5 2587 714 60 2546 51 2884 586 2686 1 0 0.81 0.61

64 508 2 2382 714 73 2579 52 2748 586 2761 0.99 0.05 0.75 0.48 2523 716 60 2563 51 2846 588 2729 1 0 0.89 0.45
3 2427 715 71 2576 51 2701 587 2779 1 0 0.82 0.37 2391 717 73 2620 47 2650 589 2732 1 0 0.81 0.47
4 2180 713 67 2601 48 2488 585 2792 0.95 0.76 0.7 0.43 2329 716 69 2624 50 2569 587 2752 1 0 0.84 0.50
5 2129 714 66 2607 50 2458 586 2808 1 0 0.71 0.42 2134 714 72 2630 49 2515 587 2770 1 0 0.80 0.47
6 2068 715 67 2649 49 2368 587 2849 0.99 0.02 0.68 0.37 2200 715 65 2583 50 2411 586 2800 1 0 0.69 0.39
7 2072 716 73 2641 51 2379 588 2854 0.99 0.11 0.67 0.35

T(s) 5969.59 9300.49

PMI3HV 1 2369 786 182 2638 54 2880 638 2757 0.81 2.89 0.84 0.48 2380 788 179 2639 54 2912 641 2735 0.82 2.84 0.81 0.52

64 508 2 2153 786 143 2657 57 2694 638 2769 0.82 2.75 0.82 0.5 2611 788 175 2639 53 3108 640 2727 0.81 2.88 0.83 0.53
3 2077 785 195 2665 52 2607 638 2836 0.8 3.08 0.78 0.34 2191 786 193 2678 56 2700 638 2763 0.80 3.05 0.75 0.48
4 2024 786 155 2679 54 2569 638 2895 0.79 3.15 0.59 0.34 2117 787 188 2677 52 2620 638 2777 0.84 2.52 0.78 0.44
5 1927 786 149 2688 53 2450 638 2865 0.76 3.59 0.7 0.29 2366 787 193 2689 51 2835 639 2746 0.84 2.47 0.77 0.48
6 1908 788 151 2702 51 2442 639 2860 0.67 5.08 0.7 0.29 2011 784 195 2722 51 2499 636 2835 0.82 2.86 0.73 0.34

T(s) 6774.16 14737.24



Table 3: Non-dominated solutions found with SIM (using expected values) and SSIM, and their simulation results for the BCN
instances. Solutions selected for further comparison are highlighted in bold.

SIM. Expected values Stochastic scenario SSIM Stochastic scenario

Instance N w δ h CT #V w δ CT r15 D OT5 OT0 w δ h CT #V w δ CT r15 D OT5 OT0

BCN1LV 1 3974 1241 91 2984 37 4246 1128 3231 1 0 0.73 0.42 3970 1275 93 2987 35 4212 1162 3166 1 0 0.79 0.55

56 446 2 3856 1216 79 3004 35 4173 1103 3342 0.67 5.07 0.57 0.3 3839 1255 88 3004 36 4098 1142 3193 1 0 0.82 0.50
3 3397 1269 100 3045 35 3688 1157 3286 0.45 8.60 0.67 0.32 3672 1263 87 3016 36 3937 1150 3186 1 0 0.77 0.52
4 3566 1263 81 3038 36 3848 1150 3272 0.85 2.20 0.69 0.44 3593 1263 97 3027 35 3883 1151 3192 1 0 0.73 0.57
5 3302 1244 97 3048 37 3608 1131 3310 0.99 0.02 0.67 0.32 3572 1221 99 3033 35 3856 1108 3211 1 0 0.79 0.50

3514 1254 78 3017 35 3763 1142 3227 1 0 0.73 0.48
T(s) 2153.53 7750.77

BCN1HV 1 3504 1304 233 3093 43 4074 1173 3224 0.75 3.91 0.78 0.46 3758 1343 230 3092 41 4299 1213 3169 0.93 1.07 0.82 0.63

56 446 2 3262 1310 172 3107 42 3776 1181 3213 0.52 7.64 0.73 0.51 3635 1295 227 3107 40 4160 1166 3176 0.92 1.13 0.81 0.54
3 3351 1321 232 3103 44 3860 1191 3211 0.91 1.29 0.76 0.53 3274 1303 217 3122 42 3832 1174 3199 0.93 1.02 0.82 0.5
4 3220 1297 165 3113 44 3781 1167 3260 0.94 0.91 0.69 0.41 3150 1320 234 3129 41 3684 1190 3205 0.94 0.96 0.77 0.5
5 3144 1250 157 3126 41 3655 1120 3233 0.73 4.16 0.71 0.46 3149 1284 229 3134 40 3655 1154 3241 0.94 0.90 0.75 0.38
6 3080 1291 167 3142 42 3642 1162 3239 0.46 8.49 0.73 0.44 3120 1299 221 3136 42 3575 1170 3255 0.94 0.85 0.67 0.46

T(s) 3735.25 9988.42

BCN2LV

1 1317 774 74 1859 34 1476 703 1883 1 0 0.86 0.78 1348 771 74 1859 33 1474 700 1883 1 0 0.92 0.78

37 282

2 1317 762 76 1861 34 1491 691 1921 0.4 9.42 0.86 0.72 1264 770 74 1878 34 1394 698 1879 1 0 0.95 0.84
3 1290 773 78 1868 35 1462 701 1915 1 0 0.83 0.72 1221 764 87 1894 33 1358 692 1902 1 0 0.92 0.76
4 1213 762 86 1892 34 1376 691 1968 0.34 10.49 0.81 0.54 1192 765 81 1889 34 1287 694 1930 1 0 0.84 0.62
5 1171 724 83 1904 35 1305 653 2006 1 0 0.7 0.48 1128 754 90 1895 34 1239 683 1990 1 0 0.78 0.47
6 1176 745 94 1903 34 1345 673 2019 0.35 10.39 0.7 0.45 1105 742 88 1897 35 1284 671 1949 1 0 0.81 0.65

T(s) 974.57 3588.2

BCN2HV

1 1571 827 162 1928 36 1837 745 1932 0.93 1.02 0.89 0.56 1413 816 111 1928 36 1687 734 1941 0.93 1.01 0.92 0.57

37 282

2 1438 802 170 1930 36 1732 719 2005 0.12 14.41 0.75 0.4 1575 805 162 1926 36 1824 724 1933 0.94 0.86 0.89 0.59
3 1352 818 173 1932 36 1612 736 1991 0.1 15.75 0.75 0.51 1451 801 119 1933 37 1761 719 1925 0.94 0.96 0.89 0.59
4 1335 808 123 1942 36 1575 726 1989 0.13 14.33 0.81 0.45 1358 798 173 1940 37 1578 716 1946 0.93 1.06 0.89 0.51
5 1280 805 120 1944 37 1534 723 1990 0.13 14.21 0.83 0.45 1301 818 124 1947 36 1546 736 1952 0.91 1.41 0.89 0.51
6 1295 788 118 1953 35 1543 706 1999 0.92 1.22 0.86 0.32

T(s) 1034.21 4926.35



Table 4: Routing results per service type for each SSIM solution for PMI and BCN instances.

Stochastic scenario (LV) Stochastic scenario (HV)

U/L Cl Ca F PW T P U/L Cl Ca F PW T P

Inst N #A #A #A #R/E #A #R/E #A #R/E #A #R/E #A #A #A #A #R/E #A #R/E #A #R/E #A #R/E #A

PMI1

1 6 4 5 0 5 0.75 14 1.33 7 0.33 10 6 4 4 0 6 0.86 8 0.2 6 0.14 10

42 336

2 6 5 4 0 7 1 8 0.2 8 0.4 10 6 5 4 0 5 0.63 14 1 7 0 10
3 6 5 4 0 5 0.88 8 0.4 7 0 10 7 5 4 0 6 1.14 14 1.33 5 0.13 10
4 6 5 5 0 5 0.75 14 1 6 0 10 7 5 4 0 5 0.38 11 1 5 0.13 8
5 7 5 5 0 7 1.17 14 1 7 0 10 7 5 4 0 6 0.71 14 1.33 6 0 10

PMI2

1 17 10 10 0 14 2.5 26 2.33 11 0.71 17 15 10 10 0.13 14 2.5 19 1.5 13 1 17

83 649

2 17 10 10 0 12 2.29 26 2.33 10 0.38 17 17 10 9 0 10 1.75 15 1.2 15 1.2 17
3 17 10 10 0.13 16 3 13 1 15 1.2 17 17 10 10 0 14 2.33 15 1.2 13 1 17
4 17 10 10 0 14 2.5 13 1 15 1.2 17 17 10 10 0 14 2.5 19 1.5 13 1 17
5 24 10 10 0 14 2.33 19 1.25 15 1.2 17 17 10 10 0 14 2.5 13 1 13 1 17
6 21 10 10 0 10 1.63 13 0.83 15 1.2 17 17 10 10 0 14 2.5 15 1.2 13 1 17

PMI3

1 11 6 7 0 9 1.43 20 1.67 10 0.67 16 12 6 5 0 9 2.5 16 0.71 9 0.27 16

64 508

2 11 7 7 0 9 2.25 20 0.71 9 0.17 16 12 6 5 0 9 2.25 16 0.71 10 0.36 16
3 12 8 6 0 11 1.83 20 2 12 0.8 16 12 7 5 0 8 2 16 0.63 8 0.09 13
4 12 8 6 0 9 1.43 12 1 12 1 16 12 7 6 0 11 3 16 0.83 8 0.09 16
5 12 8 6 0 9 2.5 13 0.71 12 0.27 16 12 7 6 0 11 1.83 16 1.25 10 0.67 13
6 11 8 7 0 8 1.38 20 1.67 12 0.8 13 12 7 6 0 11 2 16 1.25 10 0.5 13

BCN1

1 12 9 11 0.8 9 2.17 18 2.33 18 2.33 18 12 8 8 0.14 9 1.83 13 1.5 11 1.2 18

56 446

2 12 9 9 0.25 14 1.44 13 2.33 13 1 18 12 9 8 0.14 8 1.57 18 2.67 11 1.2 18
3 12 11 9 0.17 9 1.33 13 1.33 18 2.67 18 12 9 8 0.14 7 1.13 13 1.75 11 1.2 18
4 16 11 9 0.33 14 3.25 13 1.5 9 0.83 18 11 9 8 0.14 9 1.83 13 1.75 11 1.2 18
5 16 11 9 0.4 14 2.17 11 1 11 1.2 18 11 9 8 0.29 9 2 18 2.33 11 1.2 18
6 16 11 9 0.5 14 4.33 11 1 11 1.17 18 11 9 8 0.14 9 2 13 2 11 1.2 14

BCN2

1 11 5 5 0 9 1.75 15 1.5 10 1 12 11 5 5 0 7 1 10 1 10 0.67 12

37 282

2 11 5 5 0 9 1.75 10 1 10 1 12 11 5 5 0 7 1 10 1 10 1 12
3 11 5 6 0 7 1.2 15 1.5 10 1 12 11 5 4 0 7 1.2 10 1 10 1 12
4 11 5 5 0 9 1.5 10 1 10 1 12 11 5 4 0 7 1.2 10 1 10 1 12
5 11 5 5 0 7 1.2 15 1.5 10 1 12 11 5 5 0 7 1 10 1 10 1 12
6 11 5 5 0 7 1.2 10 1 10 1 12 11 5 5 0 7 1.2 15 1.5 10 1 12
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Fig. 4: Turnaround tardiness regarding STD experimented by SIM and SSIM solutions under scenarios
with high variability for PMI and BCN instances

5.4. Comparison of the SSIM and an online dispatcher

To assess the quality of the solutions obtained using our approach during the day of operation, we provide
a comparison with an online dispatcher algorithm. The dispatcher algorithm is inspired by the parallel
scheduling generation scheme (Kolisch and Hartmann, 1999), which is a time-oriented insertion heuristic
for solving the resource-constrained project scheduling problem. Available resources are allocated only
to the operations that are eligible to be planned/performed at each decision time t. Requirements to
consider an activity eligible have been adapted to build a realistic dispatcher close to current operations
in most airports. Ground handlers schedule their resources according to the actual arrival of the aircraft



(i.e., ATA), and this information is typically known ahead of time, around 30 minutes before arrival.
Thus, we schedule at time t the necessary resources to perform operations in all turnarounds such that
ATA− 30 = t.

Resources are iteratively assigned to the earliest eligible activity not scheduled yet. If more than one
resource is available, the closest one is selected. Since tasks can be planned from 30 minutes before the
ATA, this assignment is done using deterministic service and traveling times. As per common operational
practice, we can include a buffer to absorb delays, so we choose as deterministic values the expected
service and traveling times to compare with SSIM in conditions of equality. We have assumed that each
vehicle leaves the depot to be at the stand at the planned starting time of the first operation, hence there
is no waiting time related to the first visit of the route.

The earliest start time is calculated using the ATA and the expected duration of the precedent opera-
tions, and is updated each time a task is planned or completed. An operation is complete when (i) t is
higher than its actual —simulated— starting time plus its actual duration, and (ii) the preceding activi-
ties in the turnaround have also been finished. Once a resource is allocated, any other operation cannot
be assigned to this resource until the scheduled activity is completed. If all the eligible operations have
been planned, or there are no more free resources, t is incremented by one, and the subset of qualified
operations is determined again.

A comparison of the simulation outcomes of SSIM and the dispatcher algorithm is provided in Ta-
ble 5. We have considered the most reliable SSIM solution per instance and the one with the smallest
fleet size when two solutions have the same reliability. The number of available resources for schedul-
ing operations using the dispatcher has been set according to the expected optimal value obtained by
the corresponding SSIM solution. As shown, the schedules obtained by SSIM clearly outperform the
dispatcher solutions in terms of robustness and incurred delays. Shorter overall turnaround times are
reached by the dispatcher, but at the expense of a considerable increase in the unproductive times of
resources. The dispatcher strategy of keeping resources locked once allocated until the activities are
completed improves the on-time performance of some assignments, but produce significant delays on
other aircraft. The risk of late departures is reduced by increasing the fleet size, leading to a high level
of underutilized resources, a typical situation encountered in airports.

Table 5: Simulation results obtained using an online dispatcher and SSIM for PMI and BCN instances.

Online dispatcher SSIM

Instance #V w δ CT r15 D OT5 OT0 w δ CT r15 D OT5 OT0

BCN1LV 35 8418.53 2198.81 3080.60 0.17 13.6 0.81 0.69 4212.32 1162.73 3166.74 1 0 0.79 0.55
BCN1HV 40 10239.13 2255.02 3107.25 0.67 5.04 0.79 0.58 3655.34 1154.86 3241.31 0.94 0.90 0.75 0.38
BCN2LV 33 5176.00 1661.58 1921.88 0 22.71 0.82 0.68 1474.56 700 1883.41 1 0 0.92 0.78
BCN2HV 36 5727.04 1714.32 1936.28 0 24.5 0.77 0.66 1824.45 724.18 1933.6 0.95 0.86 0.89 0.59
PMI1LV 47 1439.08 1622.29 1852.73 0.06 28.58 0.77 0.74 511.7 395.4 1957.11 1 0 0.83 0.33
PMI1HV 53 1873.76 1676.97 1844.08 0.35 10.38 0.86 0.69 624 428.9 1945.27 1 0 0.79 0.40
PMI2LV 47 12680.80 2999.04 3340.44 0 27.4 0.85 0.66 6312.19 765.26 3506.84 1 0 0.81 0.48
PMI2HV 47 12417.77 3080.09 3387.29 0 28.97 0.81 0.74 6180.53 832.2 3621.46 0.96 0.85 0.70 0.40
PMI3LV 47 10348.07 2312.96 2651.78 0.09 29.87 0.88 0.78 2650.39 588.57 2732.4 1 0 0.81 0.47
PMI3HV 51 11375.04 2397.79 2648.04 0.33 10.27 0.89 0.67 2835.27 639.27 2746.32 0.84 2.47 0.77 0.48



6. Conclusions

In this paper, we have introduced the SGSPP to enhance the robustness of ground support activities
in a real-life environment. A set of SVRPTW is sequentially solved considering the different relations
between activities and their effect on the defined time windows. The SVRPTWs are solved using a VNS
approach, where expected vehicle travel and waiting times are minimized along with the tardiness of
turnarounds. To obtain more reliable global solutions, we have developed the SSIM, extending the SIM
method introduced by Padrón et al. (2016). MCS is integrated into the SSIM to estimate the behavior
of the solutions reached during the search process in stochastic scenarios. The order in which each
SVRPTW is solved is iteratively changed considering the number of time window violations of different
operations, based on the simulation results. In addition, solutions are only kept if they improve reliability,
that is, the percentage of scenarios in which all turnarounds finish on time. The goal is to obtain a set of
Pareto solutions that minimize the resources’ idle time and the total turnaround time while maximizing
reliability.

The proposed methodology has been evaluated utilizing a group of instances based on two Spanish
airports flight data in scenarios with low and high variability conditions. Unlike simply using SIM with
expected times to design the routes, the simulation component of the SSIM produces more reliable solu-
tions for most instances, while keeping similar fleet utilization rates. Under low variability, turnarounds
are mostly on time in all scenarios, whereas delays are notably mitigated in the high variability situation.
In other cases, reliability is comparable. However, a higher percentage of aircraft complete the ground
activities within the scheduled slot. In general, the actual time required to finish the ground operations is
lower when the SSIM is applied. Although the execution time is increased due to the simulation compo-
nent, we can state that the SSIM yields more realistic plans and is able to reduce the risk of delays under
perturbations.

In addition to modifying the sequences of activities, using simulation results to help re-schedule the
vehicles would be required to obtain a more reliable plan in some cases. However, integrating MCS at
each step of the local search process for all the routing problems is computationally expensive. To reduce
the volume of re-optimization steps, by examining the survival functions, we noticed that tardiness could
be particularly decreased when only operations with the highest number of time window violations are
re-planned. This represents a future line of research aimed to reduce the computational requirements
of the presented approach. Another potential action is to solely simulate the most promising schedules.
In this case, schedules that are likely to fail could be rejected earlier in the process without consuming
simulation budget. To detect them, we can look at undesired attributes, such as vehicles with no to little
slack between consecutive visits, or the starting time of the most constrained operations being too close
to the end of the time window.
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