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Abstract. Aircraft turnaround scheduling and airport ground services
team/equipment planning directly concern both the airport operator
and service providers. We first ensure airport-wide global optimality
by solving a resource-constrained project scheduling problem (RCPSP)
for minimal overall delays. We then support decentralized allocation of
teams/vehicles to flights, independently by each service provider. Either
a multiple traveling salesman problem with time-windows (mTSPTW),
or a vehicle routing problem with time-windows (VRPTW) are solved for
this purpose, by taking advantage of both constraint programming (CP)
and mixed integer programming (MIP) solvers. We also exploit these
models in a matheuristic approach based on large neighborhood search
used to reach good solutions in reasonable time for real-world instances.
Unlike the classical VRP objective of minimizing traveling time, we max-
imize the total slack time between team visits, and show that doing this
fosters robustness of the generated plans. We assess the robustness of
solutions through a discrete-event simulation model, and conclude by
validating our approach with data provided by a major ground handling
company for a day of operations at Barcelona El Prat Airport.

Keywords: Optimization · Scheduling · Routing · Aviation · Airport
Operations

1 Introduction

Effective planning and scheduling is crucial in many areas of airport operations,
where decisions are interconnected with each other and the potential for flight
delays due to knock-on effects is rather high. Careful planning for the day of
operations is essential. With many factors out of the control of any airport deci-
sion maker —weather conditions, aircraft technical faults, delays, late passengers
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Fig. 1. An example of aircraft turnaround operations and precedence relationships
between them within a timeline

on boarding, etc.—, plans that are in some form robust should be sought. This
is particularly true for aircraft turnaround and airport ground services. When
an aircraft lands, it proceeds to a parking stand. Here, it undergoes a sequence
of operations to get ready for the following take-off. A mix of operations may
be needed: passenger disembarking/boarding, baggage unloading/loading, refu-
eling, cabin cleaning, catering, toilet and potable water servicing, and aircraft
push-back. Precedence relations do apply —e.g. refueling often cannot start be-
fore passengers have disembarked due to safety regulations. Figure 1 shows an
example of a single aircraft turnaround. Conjunctive arcs represent the prece-
dence relations. There exist specific time windows through which each activity
should be performed. Each time window shortens/stretches out depending on
what happens to other related operations. The turnaround should ideally start
as soon as an aircraft arrives at its stand, ideally at the time for which it was
scheduled to arrive there —or start of in-block time (SIBT )— and should be
completed by the time it was scheduled to be pushed-back into the taxiway on
its way to the runway —also called its start of off-block time (SOBT ).

Turnaround operations are often handled by different service providers (SPs).
A great deal of coordination is required to make sure they do not delay any
aircraft, and for delays not to propagate to other aircraft. Cross-turnaround
delay propagation may happen if teams from SPs are scheduled back-to-back
between subsequent aircraft: team A finishing late on aircraft turnaround X will
surely start late on turnaround Y if it was immediately assigned to it. Team A
will also be occupying the stand for longer, with turnaround Z of the aircraft
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next assigned to the same stand likely to start late, and operations of team B
(possibly of a different SP), that was assigned to Z also impacted. Propagation
of delays across the airport parking lot —apron for short— is a certainty.

Organizations in aviation have long been aware of such issues and have de-
vised an approach named Airport Collaborative Decision Making (A-CDM) ([5]),
which is currently in place in just a minority of airports in Europe —albeit some
of the biggest ones in terms of passenger numbers per year. According to A-CDM,
most of the actors involved in aircraft operations must share certain pieces of
information with one another to keep tighter levels of coordination. A central
piece of information is the Target Off-Blocks Time (TOBT), which is calculated
on the day of operations and used as a reference for all other ground service
operations. A-CDM focuses on the coordination of aircraft movements, seen,
probably correctly, as the center-piece of airport operations. But coordination of
the movements of ground service staff and related equipment across busy aprons
is equally critical, as it contributes to delays, but also because certain pieces of
costly equipment are shared by multiple turnaround teams working for separate
SPs. While A-CDM is an appealing concept, to work as expected, a certain de-
gree of information sharing among the airport and the various SPs need to be in
place, which happens typically only if enforced. Busier hub airports represent the
typical example where the enabling conditions are met. In non-A-CDM airports,
though, coordination is also needed, but without data sharing mechanisms it is
virtually impossible to achieve. The remainder of this paper proposes a feasible
and robust way to support this more general scenario.

2 Related Literature

The Operations Research (OR) community has, in the past three decades, worked
on the modeling and solution of problems related to coordinating the movements,
usage, and sharing of turnaround teams and equipment, but only partially.

The body of work by Norin and colleagues [19, 18] shares quite a few elements
with our study. As we, and others do (e.g., [1] and [21]), the problem is modeled
as a form of Vehicle Routing Problem with Time Windows (VRPTW) [22]. Sim-
ilarly to us, they work in an A-CDM setting, albeit with a different objective
function: they minimize the weighted sum of flight delays and traveling distance.
Due to the computational complexity of the underlying problem, they also fo-
cus on finding reasonable solutions in short times adopting a form of Greedy
Randomized Adaptive Search Procedure (GRASP). They also make use of sim-
ulation to test the robustness of their heuristic plans under a range of uncertain
conditions. Differently from us, the authors focus on one turnaround operation
only: de-icing, with one type of vehicle/related staff to operate them. Stockholm
Arlanda provides for their data set and motivating example.

In another closely related study [12], the authors did not see an option to
adopt a fully centralized solution process, as the ground service providers are
effectively separate legal entities making independent decisions. They also did
not see the point of adopting a complex negotiation mechanism between dif-
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ferent service providers, essentially ruling out in their assumptions any form of
information sharing. This is a very relevant paper based on the same problem
as ours, but examined through a substantially different perspective.

Padron et al [21] probably represents the closest work to our study. They
also consider scheduling all the ground handling vehicles at an airport, and they
combine CP with heuristic search techniques such as Large Neighborhood Search
(LNS) and Variable Neighborhood Descent (VND). Unlike us, their turnarounds
have a fixed sequence of tasks. In a subsequent paper [20], as we do here, they
integrate simulation at the bottom-end of their methodology to investigate the
robustness of the generated heuristic solutions.

Among the remaining studies, less related to ours, [7] represents a more recent
example of VRPTW formulation, but focuses on individual workers and their
synchronization with vehicles, and has no view on collaborative mechanisms.
Works such as [1], [10], and [23] provide different heuristic approaches to solve the
vehicle routing problems implied by aircraft turnaround operations at airports.
Finally, many older studies had approached apron resource allocation problems
from a multi-agent distributed planning perspective. Among these, [16], [11],[14]
and [13] modeled their problems —as we also do in one of our steps — after
the Resource-Constrained Project Scheduling Problem (RCPSP) [2], while [6]
modeled the problem as a form of job shop scheduling.

3 Planning Process and Related Models

There are two levels to the turnaround planning problem studied in this paper—
long-term and short-term (Figure 2). All decisions are of tactical nature, as
they take place ahead of the day of operation. Real-time management of apron
operations and related resources is out of scope for the present paper.

In the longer term, flight schedules for the next few months are known to
both the airport operator (AO) and the SPs. The AO needs this information to
coordinate the scheduling of all the turnaround operations for each of the days
in the planning horizon, aiming at minimum delays. The main decision maker in
the longer-term is the AO, wanting to fix time windows for all operations whilst
keeping overall resource requirements for the airport reasonably contained. After
these decisions are made centrally, each SP can start thinking about their own
resource requirements for each day of operation, and run their own staff rostering
processes.

In the shorter term, approximately a week before the day of operations, the
updated flight schedule is shared with all SPs and the same tactical reasoning
can be rerun, with time windows revisited by the AO and rosters updated by
the SPs.

In the even shorter term, closer to the start of the day of operations, time
windows remain fixed and turnaround teams are known to SPs with a high
degree of certainty. Then, each SP makes sure they can optimally route their
staff through all turnaround tasks, by keeping some slack time to compensate
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Fig. 2. Proposed turnaround planning process

for unforeseeable delays. At this stage, the objectives and constraints can differ
by SP, but all SPs still have to stick to the time windows set by the AO.

Although our approach would ultimately help to plan for all kinds of resources
in apron operations, we focus on planning for ‘teams’ of handling agents of each
SP, i.e. we focus on human resources. Each of the turnaround operations is
normally executed by small teams of employees, of size known to each SP, and
planning for the sequence of turnarounds to be visited and serviced by each
team during the day of operation is of utmost importance. In the following, we
assume that all needed equipment is either carried over by the teams as they
move from one turnaround to the next, or sourced across the apron area as they
move through their jobs for the day, and as such is not modeled directly.

From an OR perspective, two classes of problems are involved in the de-
scription given above: project scheduling provides a convenient framework to the
AO’s problem of fixing time windows and keeping resource requirements under
control, while vehicle routing comes to the rescue of SPs for optimal routing of
their turnaround teams.

We consider (Subsection 3.1) both versions of project scheduling problems
(PSPs), with and without constraints in the number of resources (e.g., teams for
unloading/loading baggage, cleaning, catering service, refueling, etc.), the latter
class of problems taking the name of resource-constrained project scheduling
problems (RCPSP). The first objective we seek is to minimize the overall tar-
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diness for the airport. After achieving a minimal-delay ideal schedule, the total
resource requirement for the airport is minimized by enforcing any optimal solu-
tion found at this stage to maintain at least the same level of tardiness coming
from the PSP.

Moving to optimal routing of teams for each SP (Subsection 3.2), the frame-
works of reference are two: multi-traveling salesmen problem with time windows
(mTSPTW) [4] and vehicle routing problem with time windows (VRPTW). The
choice depends on whether the vehicles that are operated by teams are capaci-
tated or not. Most resources/teams use a vehicle with limited capacity in order
to service an aircraft, such as catering trucks, where the catering team is re-
sponsible for loading a certain number of galley trolleys into the aircraft. Other
resources are uncapacitated and have no limitations on the number of aircraft
that can be serviced before returning to the depot (e.g., push-back vehicles). Un-
like the typical objective of both mTSPTW and VRPTW, which is minimizing
the traveling distance, we first maximize the slack between tasks, in order to give
enough time to absorb any small disruptions. This is meant to enforce a certain
degree of robustness to the plan. After that, we try and maximize the workload
balance among teams of the same SP, as much as possible, to foster fairness of
the plan. Finally, we maximize the total slack time, when the minimum slack
time cannot be improved further, with the effect of increasing all slack times
between tasks except the minimum among all.

Details of our models are provided in the next two sub-sections. Many pow-
erful global constraints from the Constraint Programming (CP) community are
available for PSP/RCPSP and mTSPTW/VRPTW, hence our CP formulations.
By employing such global constraints and taking advantage of the strength of
different solvers, one would expect better computational performance with re-
spect to, say, Mixed-Integer Programming (MIP) formulations and solvers. All
models were developed in MiniZinc [17], a solver-independent modeling frame-
work that allows the model to be run on many different solvers. This feature was
crucial to enable our solution approach (Section 4).

3.1 Project Scheduling Models

For a given day of operations, we set the start time starti ∈ [0, tmax] of all
tasks i ∈ I = {1 . . . φ} that cover all aircraft turnarounds expected at the given
airport (tmax is the length of the day of operation). We do so in two steps. In the
first (PSP, equations (1a) and (2)—(6)), we aim at minimum costs resulting
from tardy turnarounds, assuming unlimited resources. In the second (RCPSP,
equations (1b), (2)—(6), (7b) and (8b)), we aim for minimal resource needs
whilst maintaining tardiness performance established in the first step.

Each task has an expected processing time durationi. Based on the known
flight timetables, both the Scheduled Time of Arrival (STA) and Scheduled Time
of Departure (STD) of each aircraft are known. As a result of this and of the
precedence relations among all tasks (Figure 1), earliest start times stai and
earliest end times stdi of all tasks are also known in advance. The set of all
tasks j ∈ I which can only start after a given task i ∈ I is completed is denoted
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as Si. This set will be empty for push-back tasks, which represent the natural
conclusion of the related turnarounds. In between any two tasks, a fixed setup
time setupi will ensure resources can effectively be gathered and moved from
one location to another across the apron. This parameter can be estimated as a
function of the maximum distance among all stands.

Each task represents a specific activity A = {1 . . . α}, e.g. baggage loading.
By ATa we denote the set of all tasks of type a ∈ A. Sets SO and SI represent,
respectively, activities that are only allowed to start a certain time before STD,
or after STA (mostly due to process specifications).

Certain pairs of tasks cannot be performed simultaneously, e.g. potable water
and toilet servicing of the same turnaround. P = {1 . . . N} is the set of such
forbidden pairings, and Dp is the set of (two) tasks for each p ∈ P .

Each task requires, uninterruptedly from start to end, a given amount rrik of
a given type of resource k ∈ K = {1 . . . κ}. Resource types effectively represent
teams of handling agents providing services of different nature. Resource capacity
per resource type rck also needs to be decided.

In the joint CP formulation of the PSP/RCPSP steps that follows, we also
denote (Objective Z1, see (1a)) the cost of tardy turnarounds per unit of time
as costtardy, while parameter sobta—see constraint (4)— states that certain ac-
tivities need to be completed within given bounds from the planned departure
time. Finally, we employ two global constraints: global constraint (6) ensures
non permitted task pairs are scheduled separately, while global constraint (8b)
ensures resource levels are not exceeded at any time.

CP Formulation

Z∗1 = min Z1 = min
∑
i∈I

where
Si={}

costtardy ×max{0, starti + durationi − stdi}
(1a)

Z∗2 = min Z2 = min
∑
k∈K

rck (1b)

subject to

starti ≥ stai ∀i ∈ I (2)

startj ≥ starti + durationi ∀i ∈ I, ∀j ∈ Si (3)

starti + durationi ≥ stdi − sobta ∀a ∈ SO, ∀i ∈ ATa (4)

starti = stai ∀a ∈ SI, ∀i ∈ ATa (5)

disjunctive([starti|i ∈ Dp], [durationi|i ∈ Dp]) ∀p ∈ P (6)

Z1 = Z∗1 (7b)

cumulative([starti | i ∈ I], [durationi + setupi | i ∈ I], [rrk,i | i ∈ I], rck)
∀k ∈ K where rck <

∑
i∈I

rrk,i (8b)
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3.2 Routing Models

After solving the above project scheduling problems, both the AO and all SPs
know all time windows in which tasks should be executed on the given day of
operation, as well as the number of teams of all types that are likely required to
do the job. Each SP then takes this information to optimally schedule for their
own teams to cover all turnaround tasks they are contracted to service. In the
following we will see how this single-SP decision can be supported.

As in subsection 3.1, we provide a joint formulation following a lexicographic
approach, with three objectives/sub-problems in this case. The sequence of three
is then repeatedly solved as many times as the resource types managed by the
given SP. For some resource types (teams), the vehicles used, e.g. re-fueling
trucks, have finite capacity, hence they may need to be replenished before visiting
the next turnaround. For these resource types, capacity constraints (20)—(22)
will need to be included in the three models. The sub-problems take then the
form of a VRPTW, irrespective of the objective/step in the sequence. For other
resource types (teams), e.g. push-back trucks, capacity is not an issue, constraints
(20)—(22) are excluded, and the sub-problems take the form of an mTSPTW.

The objective of utmost importance, and the one to pursue first (equations (9)
and (12)—(23)), is to maximize the minimum slack time between any two tasks,
in an attempt to absorb short delays and prevent minor knock-on effects. The
second step in the sequence (equations (10), (12)—(23) and (24b)) looks at max-
imizing the workload balance among teams, to enforce some form of fairness in
the plan, something which would be required in highly-unionized settings. Work-
load equity and its calculation is a subject of interest in the literature [15] on
routing problems. The general suggestion points at minimizing the maximum
distance in order to achieve a balanced workload while still ensuring the mini-
mization of traveling distances. However, we are not as concerned with traveling
times in between tasks as we are with the much higher processing times for each
task. The last step (equations (11), (12)—(23), (24b) and (24c)) then seeks to
maximize the total slack time in the plan, in a way to increase its robustness.

On the given day of operation, we focus on a given working shift S =
[startshift , endshift ] for which a staff roster of the given SP is available. Within
that, we know the number of teams t ∈ TSP,k = {1 . . . tSP,k} of resource type k,
who need to cover, overall, a known number of tasks i ∈ ISP,k = {1 . . . φSP,k} ⊂
I, by moving across a given number of parking stands h ∈ H = {1 . . . η}, where
tasks are performed. The SP wants to set, for each task i:

– the start time of the task, or stimei ∈ S;
– the team rti ∈ TSP,k assigned to i;
– the task si immediately following i;
– whether replenishment is needed prior to moving to si.

For each available team, a specific route needs to be set up for the given shift
(hence the letters ‘rt’ in rti), where the first task is a dummy task the label of
which is a function of the label/index of the team in question, while all other
tasks are ‘genuine’ tasks from set ISP,k. Task labels then, whether genuine or
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dummy, take on value in set N = ISP,k ∪ {φSP,k + 1, . . . , φSP,k + tSP,k}. As
a result, any task that is not the first task in each route is a task si ∈ ISP,k.
Constraint (14) ensures all the dummy nodes represent the start of individual
routes. Constraint (15) makes sure both i and si belong to the same route.

CP Formulation

z∗1 = max z1 = max min
i∈ISP,k

slacki (9)

z∗2 = max z2 = max ( min
t∈TSP,k

workloadt − max
t∈TSP,k

workloadt) (10)

z∗3 = max z3 = max
∑

i∈ISP,k

slacki (11)

subject to

circuit ([si | i ∈ N ]) (12)

alldifferent ([si | i ∈ N ]) (13)

rtφ+t = t ∀t ∈ TSP,k (14)

rtsi = rti ∀i ∈ ISP,k (15)

stimei = starti ∀i ∈ ISP,k (16)

busyi =


stimei + durationi+

traveltimehi,hj + xi × replenish, ∀i ∈ ISP,k
endshift, otherwise

| si ∈ ISP,k (17)

stimesi ≥ busyi ∀i ∈ ISP,k (18)

slacki = stimesi − busyi ∀i ∈ ISP,k (19)

qi = cap ∀i ∈ N \ ISP,k(20)

qsi = qi − demandsi ∀i ∈ N \ ISP,k(21)

qsi =

{
cap− demandsi , if xi = 1

qi − demandsi , otherwise
∀i ∈ ISP,k (22)

workloadt =
∑

i∈ISP,k

where rti=t

durationi ∀t ∈ TSP,k (23)

z1 = z∗1 (24b)

z2 ≥ z∗2 (24c)

Tasks should start at a time stimei that is no earlier than the starti that
was assigned at the PSP/RCPSP stage. Later starts could be advisable/needed,
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e.g. because of resource limitations. Hence, although potentially contributing to
causes of delays, at this routing stage decisions on task start times could be
reconsidered, in principle at least. In our approach we simplify this aspect by
fixing starti exactly as in constraint (16), as this is more akin to maximizing the
form of slack in the system that we have in two out of three objectives.

Tasks should also not start until their immediate predecessor has been com-
pleted, as in constraints (18) and (17). Any time available in between tasks i and
si is defined as slack—see constraint (19). The replenishment decision is enacted
through binary decision variable xi, which takes on value 1 if replenishment needs
to happen between task i and task si, 0 otherwise. Each replenishment takes
replenish time. Moving between two consecutive tasks requires traveltimehi,hj ,
with hi, hj ∈ H, hi 6= hj . Task duration is again denoted as durationi. The sum
of the duration of all tasks assigned to a given team contribute to defining the
total workload workloadt for the team, as in constraint (23).

For capacity constrained turnaround services, initial capacity qi for the team
and related vehicle is set to cap—constraint (20); capacity then depletes as re-
quired by the demand from each subsequent task si but is topped-up any time
a replenishment decision is made—see constraints (21) and (22).

Global constraint (12) builds a single overall sequence for all tasks of all
routes, with dummy tasks signposting the start of each team’s own route. Global
constraint (13) is redundant and added to help propagation.

4 Solution Approach

From the above discussion, we know that our overall approach develops as in
Figure 2, with perspectives from both the AO and all the SPs supported by the
models presented, respectively, in Sub-sections 3.1 and 3.2.

Table 1. Solution Steps

Step Model Obj. Additional
Input

Solver Search Strategy* Time
Limit(s)

Warm
Start

1.1 PSP Z1 — Chuffed smallest,
indomain min

— —

1.2 RCPSP Z2 Z∗
1 Chuffed smallest,

indomain min
— —

2.1.1 mTSPTW/
VRPTW

z1 tSP,k, start Gecode first fail/smallest,
indomain max/min

10 –

2.1.2 mTSPTW/
VRPTW

z1 tSP,k, start,
s, rt

Gurobi — — Yes

2.2 mTSPTW/
VRPTW

z2 tSP,k, start,
z∗1

Gecode first fail/smallest,
indomain max/min

20 —

2.3 mTSPTW/
VRPTW

z3 tSP,k, start,
z∗1 , z∗2

Gecode first fail/smallest,
indomain max/min

90 —
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Algorithm 1: Large Neighborhood Search

Input: rt, s, z3 from CP model (step 2.3 )
rtb ← rt
sb ← s
zb3 ← z3
while iter < maxIter do

k1 ← a random number from {1 . . . tSP,k}
k2 ← a random number from {1 . . . tSP,k} \ {k1}
for i← 1 to φ do

while rti ∈ [k1,k2] do
Destroy rti and si

end

end
Repair rt, s, z3 with CP model(step 2.3)
rtt ← rt
st ← s
zt3 ← z3
if zt3 < zb3 then

z3 ← zt3
rt← rtt

s← st

else

zb3 ← zt3
rtb ← rtt

sb ← st

end

end

Table 1 shows further details around solvers and search strategies we used,
as well as additional parameters around any time limits adopted as stopping
criterion, or whether we made use of a warm-start. Numbers in the first column
to the left correspond to component steps of Steps 1 and 2 from Figure 2. Variable
names in the table refer to the formulations from Section 3.

All models were implemented in MiniZinc, which enabled us to test the per-
formance of different solvers for each model, and ultimately select the most
suitable for use in each case. In the case of steps 1.1 and 1.2, Chuffed [3] clearly
outperformed all other available solvers and we were able to prove optimality for
all instances. The first sub-problem of Step 2 though, that is the maximization of
minimum slack time, proved slightly different, and had to be broken down into
two further component steps. We first used CP with a specialized search strat-
egy (step 2.1.1) which allowed us to reach the maximum as quickly as possible
with Gecode [8]. However, it took very long for CP to prove optimality in almost
all cases. Thus, by taking advantage of the warm-start possibility, we used the
same model and the solution provided by Gecode as a warm start for a MIP
solver (Gurobi [9]) (2.1.2), thanks to which we managed to prove optimality for
all instances in a very short time.
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Choosing the right search strategy also proved decisive in terms of solv-
ing times wherever we adopted a CP approach. In steps 1.1 and 1.2, we chose
the starti variables to lead the search. The variable selection strategy smallest
means a variable is chosen with the smallest value in its domain, and the assign-
ment of the value to that variable is done using indomain min, meaning that
it will get assigned the minimum value in its domain. On the other hand, for
the mTSPTW/VRPTW component, we noticed the model was unable to solve
quickly without specifying any search strategies. We then noticed that the two
forms of the problem claim for different choices of search strategy. We observed
that first fail, where the variable with the smallest domain is chosen, outper-
forms other strategies for all mTSPTWs, while smallest performed better for
all VRPTWs. On the variable assignment for mTSPTW, indomain max ruled
out the rest, meaning the assignment was made with the maximum value in its
domain. For VRPTW, on the other hand, indomain min performed better.

The very last step of our approach involves adopting a Large Neighborhood
Search (LNS) schema (Algorithm 1) to further improve the solutions obtained
from each of the routing sub-problems composing step 2.2. In our implementa-
tion of LNS, we take the solution from maximizing z3 as a starting point, then
‘destroy’ two routes, chosen at random from the given solution, and finally use
again the same model from step 2.3 to ‘repair’ it. If the new solution is better
than the incumbent, we update the record of the best solution, and repeat the
process for up to 200 iterations.

5 Experiments

In this study we used real data coming from Europe’s 6th busiest commercial
airport, Barcelona - El Prat (BCN). Our data relate to one given day of operation
and include seven resource types, with each type handled by a different SP, and
ten different turnaround activity types, for a total of 914 tasks to be scheduled at
the PSP/RCPSP stage. At the mTSPTW/VRPTW stage, we considered the two
shifts per day as currently adopted at the given airport, irrespective of resource
type/SP. There are approximately 50 turnarounds in each shift, amounting to
approximately the same number of tasks to be assigned per resource type and
shift. In some cases from out data set, two teams are required to perform a
task —e.g., baggage loading/unloading for wide-body aircraft. In these cases,
the tasks are duplicated to ensure two teams, not one, perform the same task.

We ran all models on a personal laptop (1.6 GHz Intel Core i5) running
mac-OS High Sierra. The overall integration was achieved in Python 3.7 using
MiniZinc Python (MiniZinc version 2.3.2), which allowed us to solve the models
in an incremental way, whilst providing a platform for easy integration of our
LNS implementation. Computation times are not of primary concern when deal-
ing with our problem, as clear from Figure 2, hence the average 45 minutes taken
to run the whole solution approach end to end does not represent a problem,
to start with. In reality though, the AO will only run the PSP/RCPSP stage,
which will take only approximately 7 minutes. Each SP will instead run the
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mTSPTW/VRPTW separately, on its own, for two shifts, which will take up to
around 6 minutes for each SP, LNS step included. The RCPSP is proven to be
optimal for minimizing tardiness, as well as for minimizing total resources/teams
per SP. Moreover, in the second stage, we prove optimality for the maximum
minimum slack time for the given tardiness and resource levels. Work balance
is between 0 and 66 minutes, and 15 minutes on average, within the allowed
time limit. Ensuring optimal workload balance proved too challenging, hence we
limited the time available for this stage.

The most time-consuming part of the whole approach was to find the optimal
solution for total slack time for each VRPTW. This is due to the workload
balance objective and constraints. When we relaxed this and maximized it for
z1 and z3, we could get an optimal solution using Gurobi for almost all resource
types and shifts, with only a few instances not proven in 5 hours of solving
time. We compared the results of the objective bounds with our lexicographic
approach (excluding workload balance objective and constraint). The average
gap was 0.68% for 14 instances of a mix of mTSPTW and VRPTW (each for
one shift). The maximum gap was 2.72%. The average solution time for our
approach was 1.78 minutes, while it required 60 minutes for Gurobi to prove
optimality, if reached.

Padron and Guimarans [20] tackled an extremely similar ground-handling
problem on the exact same data set. Compared to them, our approach was able
to reduce the number of resources used per resource type when tested in the
same instance for BCN. This was largely because in the RCPSP stage we give
flexibility to the ordering of tasks for an individual turnaround, rather than using
a preset plan for each turnaround as they do.

To test our optimization results under the uncertainty that normally per-
meates real airport settings, we developed, validated and used a discrete event
simulator. Uncertain factors in our problem include: aircraft arrival time, task
duration, traveling time between stands, and replenishment time. A bounded ex-
ponential probability distribution was used for the traveling time, and triangular
distributions for the rest.

In addition to the real case from BCN, we generated several instances with
different mix of aircraft and frequencies of arrivals and departures. Instances are
presented as ta[θ] t[tmax], where θ is the number of turnarounds and tmax is
the planning horizon in minutes. We study these scenarios, together with the one
from Barcelona Airport, by setting different levels of variability (normal and high
variability). We use this experimental setting to evaluate our approach using two
different objectives: maximizing slack time and minimizing traveling time, as in
typical VRPTWs. Ten independent replications were produced for each scenario.
Table 2 provides a summary of relevant indicators. Σ is the total delay time, N
is the number of delays, N% is the percentage of delays and Σ>15 shows the sum
of delays that are in excess of 15 minutes. Superscripts s and t refer to the two
approaches: maximizing slack and minimizing traveling distance, respectively.
Computation time, including solving the RCPSP plus the average solving time
(in seconds) of all VRPs and excluding simulation for a deterministic bound, are
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indicated by τs and τ t for the respective approaches. Times for the simulated
instances with normal and high variability are not provided in the table since
the deterministic instances’ computation times ( det) are the main indicators of
the solution approach and simulation is not part of the solution but only used
as a tool for evaluation.

Table 2. Simulation Key Performance Indicators (KPIs) for slack time maximization
and travel time minimization approaches

instance Ns
% N t

% Σs Σt Σs
>15 Σt

>15 ∆Σ>15 τs τ t

ta24 t120 normal 62.50 67.50 87.67 106.89 4.61 6.58 1.97 - -

ta48 t240 normal 66.04 76.25 262.98 362.66 15.67 36.18 20.51 - -

ta72 t360 normal 60.28 69.44 376.97 512.09 21.65 55.86 34.21 - -

ta96 t480 normal 69.69 78.23 570.39 792.53 25.79 88.98 63.19 - -

bcn normal 46.67 51.51 200.36 242.1 0.08 0.82 0.74 - -

ta24 t120 high 86.67 92.50 290.36 279.45 77.69 48.21 -29.48 - -

ta48 t240 high 83.54 89.38 462.05 670.61 71.76 165.66 93.90 - -

ta72 t360 high 84.17 91.67 708.97 1128.36 131.77 337.09 205.32 - -

ta96 t480 high 85.52 92.81 1015.62 1620.01 154.56 509.48 354.92 - -

bcn high 61.72 69.35 423.13 541.47 9.65 21.67 12.02 - -

ta24 t120 det 25.00 25.00 32.00 32.00 1.00 1.00 0.00 21 33

ta48 t240 det 41.67 41.67 164.00 164.00 2.00 2.00 0.00 558 120

ta72 t360 det 40.28 40.28 252.00 252.00 2.00 2.00 0.00 961 415

ta96 t480 det 53.13 53.13 370.00 370.00 3.00 3.00 0.00 1171 322

bcn det 22.58 22.58 71.00 72.00 0.00 0.00 0.00 327 270

In the deterministic case, the KPIs are the same since there are enough
teams to perform the given tasks on time, no matter what the objective is. In
the normal and high variability cases, except one, we observe that our approach
maximizing slack outperforms the typical minimization of traveling time. In
the real case of BCN, we only have partial information provided by a ground
handling company, and the instance does not correspond to the whole operation
at the airport —i.e., it only includes the flights corresponding to the airlines
currently having a contract with the ground handler. This implies a lower arrival
frequency in the instance, causing long idle times between the majority of tasks.
In these cases, our approach is not significantly better than simply minimizing
traveling time, as long as variability remains low. However, as aircraft arrival
frequency and variability increase, we observe a significant difference between
the two objectives. Figure 3 shows how our approach is able to outperform
travel time minimization, reducing the total delay across all turnarounds. This
figure also shows that our approach provides more predictable delays, with a
more contained spread across simulations for all instances.

Table 2 also includes other important key performance indicators (KPIs),
such as percentage of delayed turnarounds and total minutes of delay exceeding
the on time threshold of 15 minutes. The latter is a big concern for SPs, since
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Fig. 3. Total delay per instance among 10 simulation replications

failing to meet this target carries penalties and potential further delays due to
air traffic management. Our approach clearly reduces the total delay over 15
minutes, for up to 70% over the day of operation, except for one instance under
high variability. Considering each minute of delay incurs a cost, deploying our
approach in real-life scenarios could potentially result in significant cost savings.

6 Conclusion

In this work, we proposed a novel two-step solution approach to the airport
ground service scheduling and team planning problem. With respect to earlier
approaches, the RCPSP step allows service providers to operate their busy sched-
ules with potentially fewer human resources. Our focus on maximizing minimum
slack in the second step ensures they can do so efficiently. Our simulation proves
the robustness of our approach. Still, tighter links between simulation and the
optimization components could help, in the future, to enhance the performance
of our LNS-based approach, e.g., by generating cuts from the simulation results
for the benefit of the heuristic search component or using simulation within the
CP search strategy.
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