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Abstract
Scheduling aircraft turnarounds at airports requires the coordination of several organizations,
including the airport operator, airlines, and ground service providers. The latter manage the
necessary supplies and teams to handle aircraft in between consecutive flights, in an area
called the airport ‘apron’. Divergence and conflicting priorities across organizational borders
negatively impact the smooth running of operations, and play amajor role in departure delays.
We provide a novel simulation-optimization approach that allows multiple service providers
to build robust plans for their teams independently, whilst supporting overall coordination
through central scheduling of all the involved turnaround activities. Simulation is integrated
within the optimization process, following simheuristic techniques, which are augmented
with an efficient search driving mechanism. Two tailored constraint-based feedback routines
are automatically generated from simulation outputs to constrain the search space to solutions
more likely to ensure plan robustness. The two simulation components provide constructive
feedback on individual routing problems and global turnaround scheduling, respectively.
Compared to the state-of-the-art approach for aircraft turnaround scheduling and routing
of service teams, our methodology improves the apron’s on-time punctuality, without the
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need for the involved organizations to share sensitive information. This supports a wider
applicability of our approach in a multiple-stakeholder environment.

Keywords Simheuristics · Simulation · Optimization · Large neighborhood search · Robust
scheduling · Constraint programming

1 Introduction

Airports involve many stakeholders and require tight coordination between them to achieve
safe and efficient operations. Third-party service providers (SPs) normally supply ground
handling services such as refueling, baggage loading/unloading, catering, etc., whilst satis-
fying given service levels, as agreed between themselves and the airlines. Competition among
SPs at the same airport is often fierce, and risks of losing a contract with a carrier are not neg-
ligible. Legislative frameworks, such as the European Union’s Ground Handling Directive
(Official Journal 1996), have been in place to foster fair competition at the level of each air-
port. Before 1996, airlines tended to suffer from the monopoly of a single handling company
and high prices, and switching SP due to reasons such as poor service delivery was not as
easy. In the USA, airline-owned SPs are often employed to serve their own fleet. Irrespective
of ownership structure, tight coordination is required across the many SPs covering, at the
same airport, the various services needed by an aircraft between two consecutive flights. This
set of activities goes by the name of aircraft turnaround, and possesses the features of a typi-
cal resource-constrained project scheduling problem (RCPSP) (Blazewicz et al., 1983), with
precedence relationships among the composing tasks and the urge to minimize the makespan
of all individual projects, to facilitate aircraft on-time departure. Internal coordination within
a single SP is required to efficiently manage both the human resources (generally organized
in teams, the size of which depends on the specific service type) and technical assets, as
required across the many aircraft to be serviced in a shift/day. Over and above, ground han-
dling operations do strongly depend on decisions made by other stakeholders operating at
the same airport, such as the airport operator and the air traffic service providers.

All the above taken, it comes as no surprise that the planning and scheduling of airport
ground handling tasks and teams have surfaced in the scholarly literature over the past 25
years—e.g., Norin et al. (2009) and Kuster and Jannach (2006). Especially, robust scheduling
ahead of the day of operations is crucial for both SPs and airlines to keep any rescheduling
needs on the day of operations within reasonable limits. In an environment as dynamic as
an airport, things will surely get out of hand every now and again, due to operational delays,
either locally or across the wider air transport network. But some of the reasons for such
dependent delays can be modeled, and decisions that are likely to guarantee certain levels of
robustness in the sense just stated can be made in advance.

Figure 1 shows an example turnaround. The aircraft remains at its parking stand—in an
area of the airport called apron—between the scheduled in-blocks time (SIBT) and the sched-
uled off-blocks time (SOBT), at which point it is normally pushed back into the taxiway to
then proceed to the runway for take-off. These are the times when chocks (large rubber or
wooden wedges) are placed (SIBT) and removed from (SOBT) around each wheel, to keep
the aircraft from moving. Color-coded thin bars represent the time windows, according to
plans and any other constraints (e.g., boarding may start only as far back from the SOBT as
considered desirable) within which activities should take place. Thicker bars show planned
durations, start and end times for all activities. These ‘as-planned’ durations follow, in gen-
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Fig. 1 A typical turnaround (arcs denote precedence relations)

eral, the standard operating procedures known for each aircraft. Precedence relations are
shown as arrows linking activities. To guarantee on-time departures, tardiness of all such
turnarounds/projects must be minimized. The On-Time Departure Performance of an airport
overall (OTDP, roughly the % of aircraft leaving up to 15 minutes past their scheduled time
of departure) is one of the most visible indicators of how well it functions, and is affected by
factors that go beyond activity dependence and delays within each turnaround, thus becoming
a complex issue for airport managers to look at.

From each SP’s viewpoint, achieving timely completion of every service to every aircraft
requires accurate orchestration of both the human resources (teams of staff) available on shift,
aswell as the related technical assets (e.g., baggage loading/unloadingbelts, push-back trucks,
etc.). The latter go by the name of ground support equipment (GSE). Given the tight compe-
tition in the ground handling market, costs become crucial, beginning with both staffing and
GSE levels, and resources are often scarce. Robust scheduling of all resources becomes key
to each SP. But this is not enough. The dependencies among the activities of each turnaround,
together with the involvement of multiple SPs, suggests that cross-turnaround coordination
should be sought. This might help, if not to eliminate delay propagation (unlikely, in real
world environments), at least to manage it in a way that minimizes it and/or to help to regain
control of operations quicker after major operational disruptions (Ball et al. 2007; Evler et al.
2021). In this paper, we focus on the management of turnaround teams, their timely delivery
of each activity, and movement between turnarounds. This adds another level to the RCPSP
mentioned above. More precisely, it requires the modeling and solution of vehicle routing
problems with time-windows (VRPTW) (Solomon and Desrosiers 1988), covering the many
types of resources (teams) involved. Hence, each of the SP teams needs to be routed robustly
in a way that keeps at least the knock-on effects in delay propagation within reasonable
control.

In the last two decades, an approach to handle airport operations, including apron opera-
tions, has been put in place at some of the major European airports (30 in total, at the time
of writing). This is called Airport Collaborative Decision Making (A-CDM) (Eurocontrol
2018), and aims at enhanced information sharing between all airport stakeholders. Informa-
tion to be shared includes relevant time stamps around the status of all activities, and the
establishment of certain milestones or key times for each turnaround, around which every-
thing else is organized. This scenario is viable where it can be enforced, such as the biggest
and most complex airports. Most airport realities do not implement A-CDM, which raises
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the question of how to support robust scheduling of apron resources outwith A-CDM. For
state-of-the-art approaches to A-CDM airport settings, see Evler et al. (2021).

We propose a new approach which helps the SPs to make individual decisions about the
optimal routing of their turnaround teams,whilst achieving airport-wide coordination through
robust scheduling of the same activities across all SPs. We handle these two optimization
components via deterministic optimization approaches that involve constraint programming
(CP) (Hentenryck 2002) and metaheuristics, in a framework that will be clarified later. We
ensure desired degrees of plan robustness by accounting for the non-deterministic elements of
both problems, through stochastic simulation of each component. We achieve the hybridiza-
tion of optimization and simulation by borrowing ideas from the family of techniques known
as Simheuristics (Juan et al. 2015), which we enhance through a tighter link between the sim-
ulation and the optimization processes. In particular, we set a feedback mechanism between
each of the two simulation stages in our procedure and corresponding points in the optimiza-
tion sub-routines, to intelligently guide the next stage of optimization towards a likely more
robust solution. Earlier versions of our ideas are available in Gök et al. (2020a) and Gök
et al. (2020b), but only in this paper we fully develop the two feedback mechanisms and
show their benefits to the robust planning of apron operations.

In Sect. 2 we discuss related works along two lines: (a) the different ways in which
simulation and heuristics have been hybridized, within Simheuristics; and (b) modeling and
solution of scheduling and planning problems related to airport ground handling services in
non-A-CDM settings, which represents our focus. We also clarify our contributions in both
these respects. Sect. 3 proposes compact mathematical models for both the scheduling of
turnarounds and routing of all teams of SPs concurrently operating at the same airport. In
Sect. 4, we discuss our simheuristic approach and emphasize the novel aspect that centers
on our feedback mechanism from simulation back to optimization. Before that, we present
and justify our choice of robustness metrics in detail. Our extensive experimental analysis
is provided in Sect. 5, in which we also compare our simheuristic algorithm to the closest
approach from previous literature (Padrón et al. 2016). Finally, Sect. 6 wraps up major
learning points from our study.

2 Related literature and paper contributions

2.1 Simheuristics and simulation-optimization

Simheuristics have become a prominent field of research and many scientific works have
adopted them to solve stochastic combinatorial problems efficiently, routing problems in
particular (Juan et al. 2015; Chica et al. 2020). Hybridizing simulation with metaheuristics
provides a framework for assessing solutions under uncertainty and guidance through the
search space based on this assessment. This way, large-scale, complex problems are solved
with less computational effort than classical stochastic optimizationmethods (Pagès-Bernaus
et al. 2019; Juan et al. 2021).

In many works within the simheuristics domain, simulation is embedded in two steps of
the heuristic method: (i) in the move acceptance component, to drive the search by roughly
measuring the quality of the deterministic solution in stochastic scenarios, and (ii) at the end
of the optimization process, to perform an even more detailed assessment. In the former,
simulation is launched after completing each local search process, when the deterministic
cost of the obtained solution is improved. A small number of simulation runs are conducted to
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estimate the stochastic cost, by exchanging the deterministic parameters with pseudo-random
numbers. Should the stochastic version of the objective function result in an improvement,
the solution is set aside to be intensively simulated in the second step, once the ‘optimization’
process has been completed.

This recurring scheme is employed e.g., byGrasas et al. (2016),where aMonteCarlo (MC)
sampling method is embedded within iterated local search (ILS). The combination of MC
and ILS is also adopted by Guimarans et al. (2018) to solve the vehicle routing problem with
packing constraints and varying travel times. In de Armas et al. (2017) the facility location
problem with uncertain service costs is addressed in a similar fashion. Besides determining
the best solution in terms of expected costs, the simulation cycle produces solutions with the
highest performance according to standard statistical measures such as standard deviation or
quantiles. Likewise, this same strategy has been used to incorporate simulation within other
heuristics or metaheuristics, such as the savings-based heuristic (Gonzalez-Martin et al.
2018), variable neighborhood search (Gruler et al. 2018, 2020), the greedy randomised
adaptive search procedure (Ferone et al. 2019), and genetic algorithms (Rabe et al. 2020).
In the latter though, the realizations of the random variables are obtained by applying a
discrete-event simulation (DES).

Irawan et al. (2021) follow a similar configuration to schedule wind turbines’ maintenance
combining large neighborhood search (LNS) with MC sampling at the usual two stages, with
slight differences. Stochastic variables are replaced by the value corresponding to a given
quantile. In addition, only a single optimal solution for the stochastic problem is stored and
further tested. A one-stage combination ofMC sampling and a genetic algorithm is presented
by Rabbani et al. (2019) in the context of a multi-objective problem. Stochastic scenarios
generated by a sampling procedure are used to evaluate the fitness functions each time a new
population of solutions is created. Latorre-Biel et al. (2020) also enclose MC sampling in the
acceptance criterion to solve the vehicle routing problemwith correlated stochastic demands.
Since customers’ requests are mutually dependent, a Petri net-based process is run, using the
generated local optimal solution to predict the expected demands for the next iteration.

In our view, the main shortcoming in the existing simheuristics literature is that simulation
is deployed to accept or reject local minima on the basis of expected costs. This way, it
provides a limited mechanism to guide the exploration of the solution space, which is likely
to lead to a larger number of replications without any guarantee of reaching an improvement.
Less than a handful of works exploit a deeper integration between the simulator and the
heuristic method. Guimarans et al. (2015) hybridize LNS, CP and MC sampling to address
the aircraft recovery problem with stochastic flight and turnaround durations. During the
exploration phase, a solution is accepted if a robustness criterion is satisfied. If it is rejected,
aircraft are re-scheduled by constraining the search space to solutions with a worse objective
function but providing a more robust performance. Keskin et al. (2021) looks at solving
electric vehicles’ recharge scheduling with random waiting times at the recharge stations.
The authors develop an adaptive LNS (ALNS) with different destroy and repair operators to
improve the initial routing solution. Through these operators, customers are ‘unrouted’ and
reinserted depending on the probability and the cost of violating the timewindows, calculated
by means of a DES.

Besides simheuristics, other simulation-based optimization approaches provide valu-
able alternatives to tackle our problem. The discrete event optimization methodology
from Pedrielli et al. (2018) includes the stochastic events in the mathematical optimiza-
tion model using decision variables. Even though Benders cuts can be applied to restrict the
feasible region (Zhang et al. 2018), the need to include all relevant simulation events in the
optimization makes this methodology impractical for our apron planning problem due to its

123



Annals of Operations Research

size and the high dimensionality of the state space. Scala et al. (2021) suggest influencing the
optimization outputs making a predefined adjustment of the input parameters of the optimiza-
tionmodel and the solvingmethod if aircraft movement conflicts exceed a specified threshold
after simulation. However, guiding exploration by applying general calibrations—i.e., mod-
ifying weighted objective functions, relaxing optimization constraints or increasing search
intensification—without targeting problematic allocations can result in excessive execution
times and sub-optimal solutions.

With the present study, we seek to improve simheuristic feedback effectiveness through
an enhanced search driving structure, picking up on some of the ideas shown by Guimarans
et al. (2015) and developing them further. We take advantage of the ability of CP to discard
unpromising regions and manage constraints efficiently. Our algorithm will then learn and
generate tailored constraints from the simulation outcomes, during execution time, to prevent
schedules being produced with unsuitable assignments or features likely to affect robustness.
We also integrate two simulation methods for reasons we will clarify in Sect. 4, while the
simheuristic literature conventionally adopts only one.

2.2 Apron operations scheduling

Research efforts around apron equipment and staff (teams) planning have been broadly
evolving in two directions: non-collaborative vs. collaborative approaches. The former
look to achieve optimized plans for a particular apron service individually, such as transfer
buses (Zhao et al. 2021), push-back tractors (Bubalo et al. 2017), assistants for reduced-
mobility passengers (Grahn and Jacquillat 2020), or ground handling workers in general (Hur
et al. 2019). They aremost suited to cater for the needs of a single SP.Collaborative approaches
pursue effective coordination between operations, and has been recognized as an important
subject for upcoming investigation (Schultz et al. 2020;Wang et al. 2021). Padrón et al. (2016)
introduce themost prominent collaborative resource allocation approach of the airport ground
handling literature, later enhanced by Padrón and Guimarans (2019) to reduce computational
times. Several types of apron services are optimized independently, but local decisions are
combined with a central view to guarantee the optimization of an overall objective. Apron
resources are allocated in sequence, solving aVRPTWper resource type, given a timewindow
configuration. Time windows are centrally established, employing a constraint satisfaction
model, and are systematically adapted to ensure coherence across the local routing solutions.
The method measures the impact of the optimal allocation of one apron service on the other
services’ available starting time. Depending on this impact, the VRPTW sequence is rear-
ranged to generate different trade-off solutions that improve the global handling schedule,
whilst minimizing the completion time of all involved turnarounds. As a downside, routing
decisions become highly dependent, making the approach suitable for the cases where a
unique SP supplies all handling operations to flights. Our research intends to be an evolution
of this methodology, particularly by removing the latter limitation.

We discussed from the outset that multiple SPs normally operate at the same airport, some-
thing which Padrón et al. (2016) does not support directly. Cross-SP collaboration has been
handled elsewhere, with the SPs, airport operator, and air traffic service providers modeled
as a set of interactive agents. Within this scheme, centralized management is implemented
by Fitouri-Trabelsi et al. (2015) via a leader agent, ensuring a smooth running of all apron-
wide operations. Kabongo et al. (2016) propose a distributed control system for the same
setting.
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Planning multiple kinds of resources from different SPs requires sharing sensitive knowl-
edge and information (e.g., asset location in real-time) between the concerned actors—a
significant limitation. An alternative protocol is discussed by Tomasella et al. (2019) to plan
turnaround teams under uncertainty. A central, airport-wide, entity verifies the suitability of
the schedule developed independently by eachSP, and feeds back to themcertain performance
estimates to suggest where a different plan would suit each SP, or the airport, any better. Sim-
ulation is enclosed in the local optimization process at each SP, using a simheuristic under
the classical scheme extensively discussed above.

Building upon the learning points from the cited papers, in the present work we propose a
hybrid planning structure that supports multiple SPs. Each SP allocates its resources (teams)
in a decentralized manner, without the need to disclose to competing SPs delicate details
such as workforce composition or capacity of each technical turnaround asset, whilst follow-
ing centrally-generated time window constraints to ensure coordination at the airport level.
Contrary to Padrón et al. (2016), time windows are fixed and are optimally set through an
RCPSP model targeting on-time performance of all the involved turnarounds. In turn, each
SP looks at maximizing slack times of their teams’ routes without affecting the consistency
or the punctuality of the overall handling schedule.

3 Problem formulations

In this section, we formulate the two sub-problems that together characterize the robust
scheduling of aircraft turnaround tasks and routing of the involved teams of staff across an
apron. We introduce updated formulations based on those originally presented in Gök et al.
(2020a). Both the overall problem and the two sub-problems we formulate are, in practice, of
stochastic nature. In this section, we follow the approach that is typical of simheuristics— see
Figures 1 and 3 in Juan et al. (2015), and present simplified deterministic formulations of
the two sub-problems. We transform the two original stochastic combinatorial optimization
problems into their deterministic equivalent versions, and explain howweobtained the related
deterministic parameters. We will reintroduce the stochastic aspect of both sub-problems in
when discussing our specific simheuristic algorithm in Sect. 4.

Both sub-problems are modeled through CP, which has a proven track record in solv-
ing scheduling and routing problems. More specifically to our work, CP has also been
proved (Guimarans et al. 2015) to work very well within simheuristic approaches, espe-
cially if paired with metaheuristics such as LNS. Furthermore, CP allows the use of ‘global
constraints’ to make the model formulation more efficient and the solution process more
effective (Beldiceanu et al. 2012), a characteristic we will also exploit.

Figure 2 illustrates an example of how scheduling turnaround tasks and team routing sub-
problems are deployed together to solve the apron operations problem for a subset of four
turnarounds running concurrently. Each turnaround requires four types of tasks to handle
the corresponding aircraft, where TA1 represents the turnaround 1 and t1,2 the task 1 from
turnaround 2. Scheduling the tasks takes the form of an RCPSP and determines the start-
ing times of all the operations involved that minimize tardiness and the required number
of resources (teams), through a lexicographic approach. Keeping the obtained start times
fixed, teams belonging to the same type and the same SP will be routed independently, by
sequentially maximizing the minimum slack, the workload balance and the total slack of the
routes. The outcome of this step is pictured on the right of the figure, where τ1,2,1 is a team
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Fig. 2 Turnaround task scheduling and team routing for planning apron operations

of type 1, and more specifically is number 2 in the set of teams of type 1 provided by the SP
1.

Eight teams, across the four team types, and belonging to three SPs, are allocated to the
planned tasks, given that SP 1 supplies services 1 and 2 and SP 2 supplies services 1 and
3, whilst service 4 is provided by only SP 3. For instance, routing decisions related to t1,1,
t1,2, and t1,3 are made by solving a single VRPTW, as all such tasks carried out by the same
team type (i.e., team type 1) and supplied by the same SP (i.e., SP 1). On the other hand,
task t1,4 is allocated through a separate VRPTW, as it relates to a turnaround serviced by
another SP (specifically, by SP 2). As a result, two teams of type 1 from SP 1 are required for
performing t1,1, t1,2, and t1,3 whereas one team of SP 2 processes t1,4. The gray box between
the tasks stands for the resulting slack between two consecutive visits in a team route, which
represents the principal decision made at the team routing stage.

3.1 Turnaround task scheduling

We look at all composing tasks of all aircraft turnarounds happening at a given airport over a
timehorizon of length tmax—saybetween a fewhours and awhole day of the airport timetable.
The aim is to achieve early coordination—ahead of the day of operation—by scheduling task
start times, denoted as starti ∈ [0, tmax ], i ∈ I = {1 . . . v}, where v is the number of tasks, to
minimize tardiness of aircraft turnarounds whilst assessing the required staffing levels to be
guaranteed by all involved SPs. Each task represents a specific activity type a ∈ A = {1 . . . u}
such as refueling, baggage loading/unloading, passenger boarding/disembarking, etc., where
u is the number of activity types. Ia ⊂ I denotes the set of all tasks of type a. The flight
timetable at the given airport provides the needed Scheduled Time of Arrival (STA) and
Scheduled Time of Departure (STD) of all aircraft, off of which earliest start stai and latest
finish times stdi for all tasks can be worked out. In most cases, it will be stai = ST A
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and stdi = ST D for all i that belong to the same aircraft. Parameters durationi denote
the estimates for the processing time of the related tasks, represented by the expected value
of the related probability distributions. The precedence relations between tasks are denoted
through a successor set Si linked to each task i , hence j ∈ Si iff task i precedes task j
(i → j). In practice, in any aircraft turnaround there exists only one task for which Si = ∅,
and that is the push-back task (Fig. 1). Some task types, such as clean water supply and waste
disposal, cannot be carried out concurrently, as they both need access to the same physical
space. P = {1 . . . d} is the set of such forbidden pairings, where d is the total number of
pairs, and Dp is the set of (two) tasks for each p ∈ P .

Sets SO and SI represent, respectively, activity types that must be completed no earlier
than a certain time (which we denote as sobta) before stdi , or begin right after stai . For
instance, boarding cannot start earlier than a set time—say 40 minutes— before the STD,
while disembarking could in theory start as soon as the aircraft reaches its stand.

The scheduling sub-problem is tackled in two stages. In the first stage, we formulate it as
a CP model as follows:

W ∗
1 = min W1 = min

∑

i∈I :Si=∅
ct × max{0, starti + durationi − stdi } (1a)

starti ≥ stai , ∀i ∈ I (2)

start j ≥ starti + durationi , ∀i ∈ I ,∀ j ∈ Si (3)

starti + durationi ≥ stdi − sobta, ∀a ∈ SO,∀i ∈ Ia (4)

starti = stai , ∀a ∈ SI ,∀i ∈ Ia (5)

dis junctive([starti |i ∈ Dp], [durationi |i ∈ Dp]), ∀p ∈ P (6)

Objective function (1a) minimizes the cost of tardy turnarounds, with ct representing the
unit cost per aircraft per minute of tardiness, which occurs, for any aircraft, when the STD
is exceeded by the finish time of the push-back task. Constraints (2) set the lower bound
to starti , while constraints (3) enforce task precedence relations. Constraints (4) and (5)
further define the feasible start times of certain tasks, according to the related stai and stdi .
The CP global constraint disjunctive (6) restricts certain pairs of tasks from taking place
simultaneously (Beldiceanu et al. 2012).

To this point, an uncapacitated project scheduling problem (PSP) has been solved, pro-
viding the minimum possible tardiness for the overall system (i.e., the apron). SP resources
are clearly finite, though, which makes the actual problem an RCPSP. We tackle this in the
second stage.

Each activity type—hence each task—requires a certain number of teams rrk,i of some
type k ∈ K = {1 . . . nRes}—often one team per activity type, but some activities (e.g.,
baggage unloading/loading) might require the coordination of different teams. Activity types
of the same nature— say refueling— but carried out by separate SPs correspond to separate
team types. This allows for covering, in this second stage, the scheduling of all team types
of all SPs (the total number of which is nRes). Also, any team of any SP can belong to only
one team type or, equivalently, performs only one activity type. This means that the human
resources in our problem are somewhat dedicated to a specific activity type, on the given
day of operation. Decision variables rck represent the number of teams of type k required
throughout the planning horizon. Setup times setupi represent the sum of two components:
(a) the travel time for a team to move to the next stand where it will perform task i ; and (b)
the setup time for the same team to get ready to start actual operations at the new stand (e.g.,
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due to positioning of equipment). Parameters setupi can be estimated as follows. From the
two distributions of components (a) and (b) for task i the overall distribution of setupi can
be obtained, e.g., via convolution. At that point, setupi can be set equal (as we did) to the
expected value of the related distribution. In our case study, we only consider component (a)
for setupi and further simplify matters by substituting setupi for all i requiring a resource,
with a constant, which is the median value of the traveling times between every gate that is
used during the given period across the apron.

The objective of this second stage aims at minimizing the overall number of teams needed
to perform all the required tasks across all turnarounds, while respecting the minimum tar-
diness obtained through solving the first stage.

W ∗
2 = min W2 = min

∑

k∈K
rck (1b)

W1 = W ∗
1 (7)

cumulative([starti | i ∈ I ], [durationi + setupi | i ∈ I ],
[rrk,i | i ∈ I ], rck), ∀k ∈ K where rck ≤ ∑

i∈I
rrk,i (8)

Objective function (1b) minimizes requirements for turnaround teams across all SPs,
subject to constraints (2)–(6) and the addition of constraints (7) and (8). Constraint (7)
ensures tardiness is kept at the minimum based on the previous result with objective (1a),
while the CP global constraint cumulative (Beldiceanu et al. 2012) ensures resource capacity
is not exceeded at any time, for any resource type (8).

3.2 Team routing

With the schedule of all turnaround tasks centrally developed, each SP knows at what time
any one of its teams must be ready to start performing each task (i.e., starti , for all i). They
also know how many teams are required for each of their services, for the airport overall to
meet desired performance levels. Each SP can now optimally route its own teams to cover
the planning horizon. We assume that all teams carry the GSE they need with them from one
aircraft to another or, if the GSE is a vehicle (true in most cases), they move with the vehicle
across the apron all the time. Therefore, we do not model GSE directly.

We support team routing decisions by modeling the problem as a VRPTW or a traveling
salesman problem with time-windows (TSPTW). The former is adopted when the GSE
operated by the team has limited capacity—e.g., catering trucks— and is likely to require
replenishment over the planning horizon. The latter is adopted otherwise. The initial GSE
capacity is set to cap. We denote as qi the capacity left at the end of task i , after supplying
its demand demandi .

Following on from PSP/RCPSP, we consider strict time windows based on task duration,
where the start time starti is enforced. We solve one team routing problem separately for
each team type k with a route devised for each team t ∈ Tk = {1 . . . rck}, where rck is
the total number of routes (teams) per team type. The tasks to be covered are denoted as
i ∈ Ik = {1 . . . lk} ⊂ I , where lk represents the total number of tasks for teams of type k. We
denote with set Nk = Ik ∪ {lk + 1, . . . , lk + rck} all regular visits plus some dummy visits
which are the end visit of each route. For each task i , the SP wants to set: (1) the start time
of the task, or stimei ; (2) the route r ti allocated to i (note: each team has its own route); (3)
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the task si immediately following i ; and, (4) whether to replenish or not the associated GSE
before moving to si (through the binary variable xi ).

Weuse variables slacki to track the available idle time between tasks; i.e., the time between
the planned completion of task i and the planned start of task si that is not consumed for
travel or replenishment. Since our goal is to foster robustness, we use slacki variables to
introduce buffers able to absorb small perturbations in the planned operations. Similarly to
the PSP/RCPSP above, we also proceed here through a lexicographic approach, this time
in three stages, with the first stage aimed at maximizing the minimum slack between tasks
across all turnarounds.

Z∗
1 = max Z1 = max min

i∈Ik
slacki (9a)

circui t ([si | i ∈ Nk]) (10)

alldifferent ([si | i ∈ Nk]) (11)

r tl+t = t, ∀t ∈ Tk (12)

r tsi = r ti , ∀i ∈ Ik (13)

stimei = starti , ∀i ∈ Ik (14)

busyi =

⎧
⎪⎨

⎪⎩

stimei + durationi+
traveltimei,si + xi × replenish,∀i ∈ Ik
endshi f t, otherwise

| si ∈ Ik (15)

stimesi ≥ busyi , ∀i ∈ Ik (16)

slacki = stimesi − busyi , ∀i ∈ Ik (17)

qi = cap, ∀i ∈ Nk\Ik (18)

qsi = qi − demandsi , ∀i ∈ Nk\Ik (19)

qsi =
{
cap − demandsi , i f xi = 1

qi − demandsi , otherwise
∀i ∈ Ik (20)

We maximize the minimum slack value across all routes (teams) and tasks (9a). As dis-
cussed, short delays are absorbed andminor knock-on effects should be prevented this way (at
least in the plan). The first stage constraints are (10)–(20), but constraints (18)–(20) are only
considered in the VRPTWs. Global constraint circuit (10) builds a single overall sequence
for all tasks of all routes (Beldiceanu et al. 2012). Within the sequence, dummy tasks are
added to indicate the end of each route, the label of which is a function of the index of the
team associated to the route, while all other tasks are regular tasks from set Ik . Dummy tasks
are assigned to each route (12), and equation (13) makes sure that both i and its successor
are allocated to the same route. Global constraint alldifferent (11) is redundant and added to
help propagation by making sure all assignments for si are different (Beldiceanu et al. 2012).
Tasks are set to start at the time imposed by the earlier centralized plan (14). Constraints (15)
set, for each task, the time until which the related team will be busy, that is busyi . Parameters
traveltimei,si indicate the time needed for the team to move between the stand of task i and
the stand of task si . These parameters can be easily derived from the same data and distribu-
tions that relate to component (a) of parameters setupi . As before, even for traveltimei,si
we adopt the expected value of the related distributions. Parameter replenish represents the
time to replenish the GSE before visiting the next aircraft. We assume that distributions for
the replenishment tasks of all GSEs are available. The deterministic parameters that are the
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replenishment times for each activity type/GSE can be set to the expected value of the related
distributions. In practice, we further simplified matters in our case study and, as done in
previous stages for setup times, we adopt a single constant value for replenish, computed
as the average of all replenishment parameters from across all activities/GSEs. Parameter
endshi f t indicates the end of the planning horizon. The start time of the successor task si
is set to no earlier than the time by when the related team is set free from the previous task
i (16). The extent of the slack available after each task i is defined through constraints (17).
Capacity constraints (18), (19) and (20) ensure that replenishment is executed only when
necessary.

In the second stage, we aim at enforcing some level of balance across all teams in terms
of the respective workloads (9b), which are defined as in constraints (21). Meanwhile, the
value of the first stage objective function (i.e., minimum slack across routes) is kept at its
maximum through constraint (22). This model also includes all constraints from (10)–(20),
with equations (18)–(20) only applied in the VRPTWs. As we demonstrated in Gök et al.
(2020a), workload balance does not always solve to optimality. Hence we set a time limit
for solving Z2. On reaching this time limit, the solution process stops and we take the best
solution so far, which we call Ẑ2.

Z∗
2 = max Z2 = max (min

t∈Tk
workloadt − max

t∈Tk
workloadt ) (9b)

workloadt =
∑

i∈Ik
where r ti=t

durationi , ∀t ∈ Tk (21)

Z1 = Z∗
1 (22)

In the third and last stage, we maximize the total slack time across all tasks with objec-
tive (9c), whilst maintaining the lower bound of the second-stage objective by adding
constraint (23). This final model contains all constraints from (10) to (23), with con-
straints (18)–(20) only enabled for the VRPTWs. Similarly to Ẑ2, we also have a time
limit for solving Z3, at the end of which we keep the best solution so far and show it as Ẑ3.
This Ẑ3 is then further improved through our algorithm which will be explained in sect. 4.3.

Z∗
3 = max Z3 = max

∑

i∈Ik
slacki (9c)

Z2 ≥ Ẑ2 (23)

4 Simulation-optimization for the robust scheduling of apron
operations

4.1 Apron operational robustness and relatedmetrics

A standard approach to assess airport operational performance is looking at figures such as
the previously mentioned OTDP, which summarizes the effectiveness of airport operations
from a passenger perspective. What these figures alone do not help much with is developing
a thorough understanding of the real causes behind, say, a 25 minute delay on departure of
a specific B737 aircraft, as many factors normally interact in determining this value. Some
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of these factors may be related to the status, around the time, of the air transport network
(local, national and beyond), and some others may be due to non-apron-related operations
at the same airport. As a result, it may be difficult to assess the effect of apron operations
per se, as well as where problems may lie, e.g., what SP may be more ineffective because
of resource capacity constraints or a sub-par schedule of their operations. The uncertainty
that is an integral component of every apron operation only complicates this performance
measurement exercise.

Our solution procedure will need to assess the robustness of the turnaround schedules
and team routing plans against a variation of scenarios that are representative of problem
uncertainty, as they are devised by our algorithm. When robustness is achieved through the
airport, our procedure terminates. We also wish to achieve robustness at each team type level.
Two assessments of robustness will then take place.

After we obtain a solution for the three-stage VRPTW/TSPTW for a given team type k,
we run independent replications of a stochastic simulation of the operations of that specific
team type alone. We do not simulate the operations of the whole apron at this point. We
refer to this simulation as SIM(k). From each replication of such experiments, we measure
all late starts of tasks of all teams of a given type. A delay is accounted for as such when the
actual task start time of activity i exceeds starti by more than the aircraft arrival delay, if
any. In fact, a delayed aircraft arrival will shift, ceteris paribus, the actual start of all tasks
of the related turnaround, equally and to the right, something which needs to be discounted
from the actual magnitude of a delay as it is due to causes beyond the control of apron
operators. For each task allocated to teams of type k, we calculate the average delay across
all SIM(k) replications, and then take the maximum of the obtained values, which we call
maxResDelaySIM(k).

Once routing plans are available for all team types, independent replications of a com-
prehensive DES of the overall apron is run based on an automatically generated Petri net
model (Guimarans 2021).We refer to this simulation as SIM(AP).We then compute a similar
metric to maxResDelaySIM(k), for each team type, for exactly the same reasons, but use in
this case a different notation (as the simulation itself has a different scope here), opting for
maxResDelayk . Unlike the SIM(k) runs, SIM(AP) runs are able to capture delay propaga-
tion across tasks within and across turnarounds. Figure 3 illustrates the point, by showing an
example involving potable water and toilet servicing for two aircraft (‘AC 1’ and ‘AC 2’).
Time in the figure flows from left to right. Labeled double arrows indicate the late arrival of
the team assigned to the task, while dotted arrows represent the transfer of a team from one
parking stand to the next. We count ‘A’ double arrows as delays, calculated as explained for
the SIM(k) stage, as they are caused by the related team’s late arrival. We do not count the
‘B’ double arrow as a delay, though. This is also a case of late arrival (of Team 2), but the
actual delayed start of the toilet servicing task is in fact due to a late finish of the potable
water servicing task (for which Team 1 is responsible). This is, in turn, directly associated to
the propagation of the delay that the same team experienced with respect to the potable water
servicing for AC 1. With a view on the overall apron operations, the maximum delay across
all team types becomesmeaningful in terms of assessing the robustness of the plans generated
from the previous steps. We denote this as maxResDelaymax = maxk∈K max ResDelayk .
This metric is especially valuable as it provides a synthetic assessment of the worst-case
delay across all the team types, including any knock-on effects as explained above.

Wesay that a routingplan for a given resource k is locally robustwhenmaxResDelaySIM(k)

< τ , where τ is a threshold parameter. Similarly, we say that the activity schedules and rout-
ing plans for the apron on the whole are globally robust when maxResDelaymax < τ . The
value of τ is indeed subjective. However, we reckon that aiming to limit the maximum delay
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Fig. 3 Example of a delay calculation and propagation

to a set value, for either each team type or across all team types, is meaningful in at least two
ways. Let us assume τ = 3 (minutes). First, ensuring that all team types are likely to guaran-
tee a maximum delay at starting their tasks of 3 minutes is a first step towards making on-time
departure punctuality more likely itself. Second, this is a way of leveling expected delays
across team types and making extreme values of such delays for any specific team type less
likely. The latter aspect was not the case in an earlier design of our robustness metrics, called
sumResDelaySIM(k), sumResDelayk and sumResDelaysum = ∑

k∈K sumResDelayk ,
where delays were defined exactly the same way, but the sum of delays across all tasks car-
ried out by teams of type k was computed instead of taking the maximum. The meaning of
τ for these versions of the metrics would also be less clear, and more difficult to relate to
the standard measures of punctuality used in the industry. Still, we will see in our numerical
study section that the latter of these earlier metrics can provide meaningful information to the
analyst—we will use sumResDelaysum in comparing our approach with the state-of-the-art
approach (Padrón et al. 2016).

Beyond assessing robustness of generated schedules and plans, we defined two sets of
additional performancemetrics to assess the overall effectiveness of the SPs on timely aircraft
departures across the apron. First, for all aircraft in a given replication, we calculate the delay
(if any) on starting the push-back task, against the scheduled push-back start time coming
from RCPSP results (starti ), and then take the average across all replications per aircraft.
We call this acDelay(RCPSP). A similar delay calculation is carried out against the STD
rather than starti . We call this metric acDelay(STD). In terms of what constitutes a delay
and what does not, the reader is referred to the discussion of maxResDelayk on Fig. 3.

4.2 Simulation-optimization approach

In this section, we describe our solution approach in detail, which falls under the broader cate-
gory of simulation-optimization techniques (Fu et al. 2005; Figueira andAlmada-Lobo 2014).
Simulation-optimization approaches provide the required flexibility to model the stochastic
nature of real operational problems. Our literature review showed that coupling simulation
with metaheuristics search is an efficient method for obtaining near-optimal solutions for
complex problems in uncertain environments, including both vehicle routing and project
scheduling problems— hence the applicability, in principle, to our apron scheduling prob-
lem. As a result, solutions for scheduling handling teams with a more robust performance
under variable conditions can be obtained.
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Following this research direction, we propose a simheuristic approach, shown in Fig. 4.
After solving the task scheduling problem, two nested simheuristic algorithms are executed,
which we name SimLNS f and SimLoop f , and are discussed further in Sect. 4.3. In the
SimLNS f stage, the solution coming from the routing optimization is further improved for
each team type, with the help of a targeted constraint feedback at every iteration of the
LNS. This feedback is generated through evaluation of SIM(k) and focuses on improving the
individual team types’ robustness. The overarching SimLoop f stage is used to improve the
overall robustness of the apron operations, also through a constraint feedback. This feedback
is generated after evaluation of the apron simulation (SIM(AP)) and improves the robustness
at the task scheduling stage for the whole apron, rather than for individual team types.

Hereby, we explain the details of our approach as outlined in Fig. 4. From top to bottom,
we start by solving the sequence of two PSP/RCPSP formulated in Sect. 3.1, which produces
strict time windows for the start of all turnaround tasks, covering all aircraft turnarounds
and SPs for the planning horizon. Both problems are solved to optimality using solver-
independent CP platforms and modeling techniques— e.g., Gök et al. (2020a) or Musliu
et al. (2018).

Simheuristic algorithms SimLNS f and SimLoop f represent enhanced versions of the
SimLNS and SimLoop algorithms first presented in Guimarans et al. (2015). The ‘f’ super-
script in their names is to highlight the major difference in our versions. These are augmented
with specific feedback mechanisms, building upon results from simulation runs, and auto-
matically generating additional cuts to our optimization models. A second major difference
is that the two algorithms are nested into one another, representing an ‘inner’ loop and an
‘outer’ loop, upon which the overall simulation-optimization procedure is built.

The overall integrated logic of the SimLNS f /SimLoop f combination works as follows. On
exit from the RCPSP, two main pieces of information are known: in addition to all task start
times, resource levels (number of teams) per type (i.e., rck) are set. With that information, it
is possible to look at optimally routing the available teams throughout the set tasks. This is
the remit of SimLNS f , which, following our assumptions discussed earlier in the paper, can
be run independently for each team type (index k). The SimLNS f algorithm itself involves
one or more iterations (index i terin), with more iterations being run if either local robustness
is not achieved, or additional options still exist to reorganize the known teams across the
set tasks, hoping this will either yield local robustness (preferably) or at least improve on
the best ‘local solution’ so far. The local solution for team type k, denoted as (Ẑ3, r t)k ,
originates at the bottom end of our three-step TSPTW/VRPTW optimization phase, with
r t being the collection of routes for all teams of type k and Ẑ3 the related total slack. All
three optimization steps are also modeled and solved by solver-independent CP technology,
with only Z1 which can can be possibly solved to optimality for instances of real-world size.
However, in some cases, the given number of teams for type k might not be sufficient to
find a feasible solution. When this happens, until a feasible solution is found, the number
of teams are increased by one and model Z1 is re-solved. These increases can be explained
as follows. In the project scheduling stages, we use the median of the traveling times. The
subsequent routing stages use the actual times, which may render the problem, for some
team types, infeasible. Hence the need to add teams to the specific team type, one by one,
until feasibility is reached. The result from the Z3 step is further improved, due to its critical
influence in operational robustness, by means of the immediately following steps, that are
the metaheuristic search (LNS) as well as the resource type specific simulation (SIM(k)).
Here lies another difference between our version and that previously presented in Guimarans
et al. (2015). In our case, we run SIM(k) prior to the destroy/repair steps of LNS, while
previously the order was reversed. One reason for this is that, following the provision of the
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Fig. 4 Simulation-optimization for robust scheduling of apron operations

initial solution by Z3, running SIM(k) on it allows the collection of performance measures
that immediately can show whether local robustness holds true from the outset, for the given
team type. At that point, prior to running the LNS step, we check whether at least the local
solution that has just failed the robustness test has improved on the best solution so far by
reducing the maximum delay. When this is the case, additional iterations of SimLNS f for the
same team type will be needed (i terin++), and we update our records. If there are still routes
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available to be destroyed, we destroy the local solution by ‘unassigning’ certain teams from
certain tasks (also called visits, following the routing jargon). Figure 5 in Sect. 4.3 will use
an example to outline in detail how this is achieved. After that, we modify the formulation of
problem Z3 by adding new constraints that build directly upon our SIM(k) results, enforcing
a higher total slack value between certain visits which cause the highest delay, with respect
to the one allocated so far. This is also discussed in detail in Sect. 4.3. At this point, we run
again Z3, the result of which is the production of a slightly modified local solution. This,
in practice, implements the ‘repair’ step of our own version of LNS, by exploiting the exact
same CP technology. The benefits of this, as opposed to running ad-hoc operators, are known
from the CP literature (Guimarans et al. 2015). Running Z3 under the additional constraints
though may result in infeasibility, as there may not exist a solution that has a higher slack
value for the given visits. In this case, SIM(k) and the robustness test will be bypassed, in
favor of backtracking to the previous local solution and searching for the next, hopefully
more promising, best option to destroy it.

After all team types have gone through SimLNS f , all their local solutions are collected
into what we call the global solution to our robust scheduling and routing apron operations
problem. This kicks off one iteration of SimLoop f , on entry of which we run SIM(AP), in
essence simulating all tasks assigned to all teams of all types, for all aircraft. On completion
of our DES replicated experiment, we move on to the next iteration i terout + + and test
global robustness of the schedules and routing plans just simulated, using the related robust-
ness metrics. When global robustness is achieved, or a preset computational budget limit is
reached (parameter max I terout ), SimLoop f reaches its completion, and, with it, the over-
all simulation-optimization routine. Successive iterations of SimLoop f will need rerunning
of SimLNS f , again for all team types and following exactly the same procedure described
above, but on different conditions. In fact, just prior to that, we add new constraints to the
slightly modified RCPSP problem— now called W3 instead of W2, which are based on the
results from the SIM(AP) experiment, and also modify the objective function, now including
additional slack from the project scheduling phase. The main difference in the constraints,
instead, relates to adding one more team associated to the team type that is most likely to ben-
efit from the addition. More details on this particular feedback will be discussed in Sect. 4.3.
A comparison between SimLoop f and the SimLoop algorithm from Guimarans et al. (2015)
reveals that the former features a slightly different version of the destroy/repair and solution
update steps, in that these are organized as part of the steps already discussed in relation to
SimLNS f .

We now devote the next section to the detailed discussion of our feedback mechanisms.
On the opposite, the role of LNS in our approach is fairly standard and hence we omit lengthy
discussions. The original source for LNS is Shaw (1998), while Gök et al. (2020a) provides
an earlier account of the role of LNS in our solution approach, and the already cited work by
Guimarans et al. (2015) provides for an example of how LNS can be employed in a problem
different from the one we study.

4.3 Feedbackmechanisms

So far, the main features of both SimLNS f and SimLoop f have been discussed, as well as
the interactions between the two. We now show both algorithms in all details, underlining
all the feedback mechanisms mentioned in the previous subsections and upon which robust
scheduling of apron operations can be built. Table 1 introduces variables and parameters used
for the first time in both Algorithms 1 and 2.
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Algorithm 1 starts with first solving model Z1. If the initial solution is not feasible, an
additional team is added and the same model is solved again. After a feasible solution is
found, the updated number of teams are outputted as rc′

k and the next two VRPTW/TSPTW

models are solved sequentially in line 7. We get an initial solution for Z3— called Ẑ3, which
is always feasible at this point. After several independent replications of SIM(k), while the
solution is not robust and there are still further destroy operations left, the LNS begins first
updating the current local solution as the best solution. At this stage, variable routeSlack is
computed from line 30 to be used later on for the feedback constraint. After determining the
visit with the maximum delay (m) and the route it belongs to (n), the routes whose visits fall
into the defined time interval (30 minutes in our experiments) are added to set D (line 35). In
order to prepare for the destroy operation, a combination of nRoute routes in set D, which
are the non-repeating pairs of routes that will be destroyed, are added to the set pair Set .

Leaving the update stage after line 39, if there are still further destroy options available, our
LNS moves on destroying the visits of the most delayed route n and two other random routes
of the same type chosen from pair Set . This set of routes is then removed from pair Set .
At this point, a slightly modified version of the CP model for maximizing total slack is run,
the result of which is the ‘repair’ of the routing plans for the team type, with all removed
tasks reassigned to some team. The CP model is automatically modified by adding two new
constraints: (1) updating the problem lower bound—inequality (24)—to the best objective
value so far (Ẑ∗

3 ); and, (2) requesting that the total slack corresponding to the portion of tasks
previously unassigned from the three selected visits (list Delay) to be higher than it was at
the previous iteration (routeSlack)—inequality (25). If the solution is feasible, then SIM(k)
is run and the same loop repeats as long as it is not robust and there are more destroy options
left. Otherwise, the SimLNS f ends, when there are no more destroy options left to improve
the current solution. If the new solution is found to be robust, the values of r t∗, slack∗ and
Ẑ∗
3 are updated.

Ẑ3 ≥ Ẑ∗
3 (24)

∑

i∈list Delay

slacki > routeSlack (25)

Figure 5 provides a visual example of the generation of list Delay andwhat happens when
the destroy operator is applied. Let us assume that Team 1 is the one with the highest delay,
and Teams 2 and 3 are randomly selected among all other teams of the same type as Team 1.
For each team, the sequence of labeled intervals represents the sequence of visits, with ‘AC x’
denoting aircraft x. The visit of Team 1 to AC 53 is affected by the highest delay (3.9 minutes,
well above the 3 minutes threshold). The algorithm analyzes the visits of Team 1 that precede
AC 53, and determines how far back in the sequence of visits to extend. In the case shown,
there appears to be a clear build-up of delays, culminating with the highest delay of AC 53.
The backtracking assessment of delays stops with AC 20 because the delay on start of AC
20 is below the threshold parameter of κ = 1 minute— lower bound under which delays
are considered either virtually negligible or easier to recoup. The sequence of AC 20, AC 35
and AC 46 becomes the list Delay variable in Algorithm 1. This list is used to automatically
generate the constraint in Eq. (25). The destroy operator involves determining what tasks
should be unassigned from Teams 1, 2 and 3. In the case shown, our algorithm unassigns
(see the crosses in the figure) all tasks that lie fully within the time interval indicated. The
time interval goes from 30 minutes prior to the planned start of the task related to AC 20
(start20)—first task in list Delay—to 30 minutes after the planned end of the task related to
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Fig. 5 SimLNS f feedback illustration

AC 56 (end56)—task corresponding to the immediate successor of the highest delayed task
of all.

At the start of SimLoop f (Algorithm 2, line 9), for each k ∈ K , Algorithm 1 is run
and all routing plans for all resource types, which are available at the end of SimLNS f , are
gathered. A SIM(AP) replicated experiment (of maxRepSIM(AP) replications) then produces
estimates of global robustness, as well as the other performance metrics introduced above.
When global robustness is not achieved or a preset computational budget limit is not reached
(parametermax I terout ) ,we run amodifiedRCPSP as follows. Thefirstmodification consists
of a new objective function (1c) where the minimum value of a new variable slacknewi
across all i ∈ I is maximized. This variable represents a slack time which is added to the
cumulative constraint (8c), over and above the duration and setup times. Notice that the
RCPSP formulated in Sect. 3 did not include any slack in between tasks. This addition is
meant to have beneficial effects in the subsequent VRPTW/TSPTW optimization stages.

W ∗
3 = max W3 = max (min

i∈I slacknewi ) (1c)

cumulative([starti | i ∈ I ], [durationi + setupi + slacknewi | i ∈ I ],
[rrk,i | i ∈ I ], rck) ∀k ∈ K where rck ≤ ∑

i∈I
rrk,i (8c)

Second, the model now forces to have an additional team of the type that maximizes the
objective by adding constraint (26). We also set the lower bound for all team types to its
previous value with constraint (27). In order to find new routing plans based on the new
scheduling solution, Algorithm 1 is run once again followed by SIM(AP) . The outer loop
continues until either global robustness is achieved, or the maximum number of iterations
max I terout is reached.

∑
k∈K

rck = ∑
k∈K

rc′
k + 1 (26)

rck ≥ rc′
k, ∀k ∈ K (27)

5 Experiments

In this section, we first discuss our instances (Sect. 5.1) and analyze the performance of our
approach, both in its own right (Sect. 5.2) and by comparison (Sect. 5.3) against the closest
competing algorithm from the literature (Padrón et al. 2016).
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Algorithm 1: SimLNS f

Input: start, duration, k
Output: r t∗, slack∗, Ẑ∗

3 , rc
′
k

1 i terin ← 0
2 solve model Z1
3 while Z1 is infeasible do
4 rck + +
5 solve model Z1

6 rc′k ← rck
7 Solve models Z2, Z3
8 r t, stime, slack, Ẑ3 ← output(Z3)
9 newConstraints ← ∅

10 destroyOptions ← True
11 outputSIM(k) ← ∅
12 repSIM(k) ← 0
13 while repSIM(k) < maxRepSIM(k) do
14 outputSIM(k) ← outputSIM(k) ∪ SIM(k)
15 repSIM(k) + +
16 maxResDelaySIM(k) ← max(average(outputSIM(k)))

17 maxResDelay∗
SIM(k)

← maxResDelaySIM(k)
18 while (maxResDelaySIM(k) ≥ τ) ∧ (destroyOptions == True) do
19 if (Z3 is feasible) ∧
20 ((i terin == 0) ∨ (maxResDelaySIM(k) < maxResDelay∗

SIM(k)
)) then

21 i terin + +
22 r t∗ ← r t , slack∗ ← slack, Ẑ∗

3 ← Ẑ3
23 maxResDelay∗

SIM(k)
← maxResDelaySIM(k)

24 X ← ∅
25 D ← ∅
26 m ← the visit with maxResDelaySIM(k)
27 o ← the immediate successor of visit m
28 n ← route of maxResDelaySIM(k)
29 r ← m
30 repeat
31 r ← immediate predecessor of r
32 add r to list Delay
33 until delayr < κ;
34 routeSlack ← ∑

i∈list Delay slacki
35 for each visit j ∈ Ik do
36 while (stimer -30 < stime j < stimeo + durationo − duration j + 30) ∧
37 (r t∗j /∈ D) do
38 add r t∗j to D

39 pair Set ←all combinations of nRoute routes from set D

40 if pair Set == ∅ then
41 destroyOptions ← False
42 else
43 X ← Random(pair Set)
44 pair Set ← pair Set − {X}
45 for each route pair p ∈ X ∪ n do
46 for each visit j ∈ p do
47 if stimer -30 < stime j < stimeo + durationo − duration j + 30 then
48 Destroy j

49 add constraints (24) and (25) to newConstraints
50 Repair Z3 CP model with newConstraints

51 r t, stime, slack, Ẑ3 ← output(Z3)
52 if Z3 is feasible then
53 outputSIM(k) ← ∅
54 repSIM(k) ← 0
55 while repSIM(k) < maxRepSIM(k) do
56 outputSIM(k) ← outputSIM(k) ∪ SIM(k)
57 repSIM(k) + +
58 maxResDelaySIM(k) ← max(average(outputSIM(k)))

59 if maxResDelaySIM(k) < τ then
60 r t∗ ← r t , slack∗ ← slack, Ẑ∗

3 ← Ẑ3
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Algorithm 2: SimLoop f

Input: start, duration
1 r t ← ∅
2 i terout ← 0
3 repeat
4 if i terout �= 0 then
5 newConstraints ← ∅
6 add constraints (8c), (26) and (27) to newConstraints
7 Solve W3 with objective (1c) and with W2 constraints ∪ newConstraints
8 start ← output(W3)

9 for each team type k ∈ K do
10 r t∗, slack∗, Ẑ∗

3 , rc′k ← Algorithm 1 (start, duration, k)
11 r t ← r t ∪ r t∗

12 generate Petri net model
13 repSIM(AP) ← 0
14 while repSIM(AP) < maxRepSIM(AP) do
15 outputSIM(AP) ← outputSIM(AP) ∪ SIM(AP)(r t)
16 repSIM(AP) + +
17 maxResDelayk ← max(average(outputSIM(AP)))
18 maxResDelaymax ← max∀k∈K (maxResDelayk )
19 i terout + +
20 until (maxResDelaymax < τ) ∨ (i terout ≥ max I terout );

5.1 Instance generation

Before running our experiments, we designed a combination of problem instances with the
aim to cover as varied a portion of real-world airport operational settings as possible in the
subsequent analysis. The planning horizon is set to 8 hours of operation, which represents
between a third and half of the duration of a day of operation at most airports. We denote our
instances as taα_β_γ _θ_σ .

Parameterα gives the total number of aircraft arrivals/turnarounds in the planning horizon.
We investigated two levels for α, namely 100 and 250. Between them they cover, roughly,
airport sizes of all but the top-20 commercial airports by yearly passenger traffic (60+million
passengers/year) (ACI 2020), out of about 10,000 commercial airports worldwide (according
to IATA codes (IATA n.d.)).

Parameter β characterizes the profile of aircraft arrivals/turnarounds over the planning
horizon. We investigated five levels for this factor: F, P, PP, FP and PF, where each ‘P’
represents a related ’peak’ of operations in terms of number of turnarounds. See Fig. 6 for
the example related to α = 250.

Parameter γ gives the number of SPs operating at the airport’s apron, which is largely a
function of α, with values taken directly from information that is freely available on the web.
For instance, in the case with about 250 turnarounds, the size of the airport is such that, on
average, about five SPs normally operate in it, for each resource type/service. Each airlinewill
normally use the services of several SPs, i.e., for airline ‘a’ the baggage loading/unloading
and push-back is handled by SP#1, the catering could be contracted to SP#13, and potable
water supply and toilet servicing to SP#27, while for airline ‘b’ it may be SP#2, SP#15 and
SP#30, respectively. The number of SPs per service does vary considerably from airport to
airport, in the real world.
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Fig. 6 Different aircraft arrival profiles across the planning horizon

Parameter θ states whether the distribution of turnarounds across the SPs is either even or
not. In the case of ‘even’, the percentage of aircraft handled by the SPs are equal. Example
distributions in ‘uneven’ casesmay be: for 100 aircraft with two SPs, we consider a 20%–80%
split; for 250 aircraft with five SPs, we have a 5%–10%–15%–30%–40% split.

Finally, parameter σ represents the overall variability in the considered probability dis-
tributions. Two levels were investigated: medium and high variability. For task duration and
replenishment times, the upper limit of the used triangular distributions is set to 30% above
the mode for medium variability, and 60% above for high variability. The lower limit is set to
20% below the mode for medium variability and 10% below for high variability. By keeping
the lower bound of the parameters slightly higher in the high variability case compared to
the medium case, we target higher delays on the high variability scenario. The mode is kept
constant across the two variability scenarios. As for the traveling times, exponential distribu-
tions of lower and higher variability were adopted for the medium and high variability cases
respectively. These times were generated, following exponential distributions of parameter
λ, as 1/λ + expo(1/λ · variabili t y), where 1/λ is the deterministic value from our case
study, and variabili t y is equal to 0.6 and 0.3 for the high and medium variability cases,
respectively. Aircraft arrival times vary between 5 minutes before to 5 minutes after STA in
all cases following a triangular distribution for which STA is the most likely value.

In total, 40 instances were tested. These resulted from the eight possible combinations of
parameters α, θ and σ , each combined with the five template profiles we created.
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Table 2 Values of algorithmic
parameters

Parameters Values

τ (minutes) 3

κ (minutes) 1

maxRepSIM(k) 200

maxRepSIM(AP) 10

max I terout 15

5.2 Algorithmic performance

Table 2 summarizes the values of the most relevant algorithmic parameters used across the
instances we investigated. SIM(AP) replications take longer than SIM(k) replications, hence
the difference in the related parameter values.

Tables 3 and 4 provide an overview of the effectiveness of our approach. They summarize
the likely operational performance of both the SPs and the apron overall, across all instances.
The resource commitment for all instances are shown in Table 3, thus giving an idea of
process efficiencies involved in achieving the related performance. The same table also shows
for which instances overall apron robustness was achieved on completion of our overall
algorithm (‘R’ and ‘NR’ standing for ‘Robust’ and ‘Not Robust’, respectively), as well as
how many iterations of SimLoop f were required (i terout ). Table 4 shows the values for
selected performance metrics at both the initial and final iterations of SimLoop f . We provide
95% confidence intervals for acDelay(RCPSP), whilst for maxResDelay we show the
values of maxResDelaymax (column ‘Max’) as well as its 90th percentile across all team
types (column ‘P90’).We also provide themean and the half–width of the difference between
the final and the initial solution for maxResDelay.

Table 3 confirms that our feedback-enhanced simheuristic yields robust solutions in 80%
of the cases, within the set limit of 15 iterations of the outer loop. The exceptions are
related solely to the biggest apron size considered, and in eight out of the ten high-variability
instances. Even then, our simheuristic managed to improve, often considerably, on the robust-
ness metric. To see this, compare the values in the ‘Max’ columns in Table 4— see instance
ta250_FP_5_UE_H. Overall, the values in column ‘P90’ for the final iteration of SimLoop f

confirm that our approach also ‘compresses’ resource delays, often quite considerably: P90
reaches values that are in excess of half a minute lower than Max in more than 60% of the
instances. Of all the ‘non robust’ cases, only instance ta250_PF_5_UE_H has a value of P90
above the set threshold, whilst in instance ta250_F_5_UE_H, the value of P90 falls below 2
minutes (against a value of Max in excess of 5 minutes).

The acDelay(RCPSP) figures from Table 4 appear to highlight an overall physiological
level of delay on starting push-back for all instances. On completion of the first iteration of
SimLoop f , acDelay(RCPSP) is always within 3 minutes before or after the time originally
set at the project scheduling stage, which means that overall apron operations tend to deliver
to plan even after uncertainty is accounted for. The results seem to provide some reassurance
that, even on the actual days of operations, where uncertainty levels will potentially reach
new heights, the delay on starting push-back is still far below the industry standard threshold
of 15 minutes (although this standard applies more directly to metric acDelay(STD)).

The difference between the final and the initial delay on starting push-back is not sub-
stantial, which is explained by the characteristics of flight schedules. Turnarounds must be
scheduled within extremely tight time windows imposed by airlines. Under realistic con-
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Table 3 Total resource requirements towards achieving the robustness target

Instances i terout Robustness
∑

rck

Initial Final Δ

ta100_F_2_E_H 2 R 75 77 2

ta100_F_2_UE_H 4 R 70 75 5

ta100_FP_2_E_H 1 R 87 87 0

ta100_FP_2_UE_H 5 R 82 90 8

ta100_P_2_E_H 10 R 92 105 13

ta100_P_2_UE_H 7 R 98 105 7

ta100_PF_2_E_H 1 R 84 84 0

ta100_PF_2_UE_H 5 R 90 97 7

ta100_PP_2_E_H 2 R 102 106 4

ta100_PP_2_UE_H 8 R 90 102 12

ta100_F_2_E_M 1 R 68 68 0

ta100_F_2_UE_M 3 R 64 67 3

ta100_FP_2_E_M 3 R 76 78 2

ta100_FP_2_UE_M 2 R 76 81 5

ta100_P_2_E_M 1 R 88 88 0

ta100_P_2_UE_M 4 R 84 90 6

ta100_PF_2_E_M 2 R 80 81 1

ta100_PF_2_UE_M 2 R 82 86 4

ta100_PP_2_E_M 2 R 98 99 1

ta100_PP_2_UE_M 6 R 81 89 8

ta250_F_5_E_H 6 R 202 217 15

ta250_F_5_UE_H 15 NR 188 209 21

ta250_FP_5_E_H 15 NR 203 226 23

ta250_FP_5_UE_H 15 NR 220 243 23

ta250_P_5_E_H 15 NR 231 253 22

ta250_P_5_UE_H 15 NR 240 264 24

ta250_PF_5_E_H 15 NR 222 242 20

ta250_PF_5_UE_H 15 NR 208 229 21

ta250_PP_5_E_H 12 R 258 280 22

ta250_PP_5_UE_H 15 NR 233 255 22

ta250_F_5_E_M 1 R 185 185 0

ta250_F_5_UE_M 5 R 169 178 9

ta250_FP_5_E_M 4 R 189 197 8

ta250_FP_5_UE_M 2 R 197 206 9

ta250_P_5_E_M 2 R 211 219 8

ta250_P_5_UE_M 13 R 214 234 20

ta250_PF_5_E_M 6 R 199 210 11

ta250_PF_5_UE_M 3 R 189 195 6

ta250_PP_5_E_M 1 R 234 234 0

ta250_PP_5_UE_M 1 R 205 205 0
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(a) (b)

Fig. 7 Performance metrics of the instances with 100 aircraft, double peak aircraft arrival pattern and high
variability. The horizontal axis is indexed according to the iterations of the outer loop

ditions, the actual duration of operations in the critical path is likely to extend beyond the
planned completion time, regardless of task configuration or resource allocation. This situa-
tion results in a lower bound on acDelay, which is already achieved by the initial solution of
our algorithm, and kept after the final step while increasing system predictability. The signif-
icant reduction in the tail end of resource delays after the overall completion of the algorithm
makes the turnaround planning less sensitive to further disturbances, and hence more robust.
Moreover, a more compact distribution of resource delays has a strong positive impact on
the performance of service providers by mitigating their operational strain to comply with
service level agreements.

Back to Table 3, one can assess the overall increase of resources (column Δ) needed to
meet the robustness requirements. Let us now recall that, at each iteration of the outer loop
(with the exception of the first iteration), a new team is added to the overall set—where it
appears to more likely enhance operational robustness. In all cases where Δ > i terout , the
positive difference between columns Δ and i terout is due to the addition of teams happening
within the routing optimization stages, where a team is automatically added when the Z1

problembecomes infeasible (more on this aspect to appear in Fig. 8). The number of resources
shown in the table refer to teams, not individuals. Different turnaround services will then
have different team sizes (number of individuals in a team), many of which will indeed have
size one or two. The figures as shown, then, do not translate easily into an equivalent number
of individuals. Having double-checked these figures with some SPs we have worked with
recently, we found they are a realistic approximation of the number of individuals these SPs
employ in similar situations. The fact that our numbers tend to be higher than theirs may help
to explain another factor in the poorer on-time performance figures from real world apron
settings.

We now turn to discussing the performance of our simheuristic algorithm per se. As an
illustration, we focus on the two instances with 100 turnarounds, 2 SPs, and double peak of
demand (PP), differing only by whether or not resources are distributed evenly. Figure 7 adds
details to the results from Tables 3 and 4, and confirms the more general trend according to
which unevenly distributed resources usually take more iterations of SimLoop f to hit the set
robustness threshold.

Figure 8 shows more about the specific dynamics around resource increase from one
iteration of the outer loop to the next. The differences between ‘at start’ and ‘at end’ represent
resources added during the various iterations of the inner loop within the given iteration of

123



Annals of Operations Research
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Fig. 8 Increase in the number of teams for the instances with 100 aircraft, double peak aircraft arrival pattern
and high variability

Table 5 Changes in
maxResDelaySIM(k) at each
LNS iteration, for each global
iteration, for unloading/loading
teams in instance
ta100_P_2_UE_H

i terout i terin max ResDelaySIM(k) (minutes)

1 1 → 2 4.04 → 2.62

2 1 → 2 3.51 → 2.67

3 1 → 2 3.64 → 2.86

4 1 → 2 3.11 → 2.87

the outer loop. Clearly, as more iterations of SimLoop f are needed, there will be less need
to add resources because of infeasibility of the routing problems (of Z1, more precisely),
and any additional resource addition will indeed be assigned to the team type that is most
constraining to the overall apron robustness.

The local feedbackmechanismoperating at the routing level, combiningLNSwithSIM(k),
is triggered in a few but not all instances. One such instance is the peak aircraft arrival
profile with high variability and unevenly distributed resources (instance ta100_P_2_UE_H).
This was expected as with tighter aircraft arrivals it is harder to recover from any delays,
considering the high number of visits each team has to make. In this case, the maximum
delay of one of the team types (unloading/loading, more precisely) is 4.04 minutes, which
is above the given threshold of 3 minutes. In order to reduce this delay below the threshold,
the local feedback is triggered and new constraints are added when repairing the destroyed
routes. The new solution’s maximum delay immediately drops below 3 minutes in a single
LNS iteration. Table 5 provides all details about this chosen example. To be noticed that
resource delay values in Table 5 should not be confused with resource delays in Table 4, as
they are computed from two separate and quite different simulation studies (SIM(k) for the
former, SIM(AP) for the latter).

Finally, a few considerations around the runtimes of our simheuristic. As an approach
involving two separate simulation stages (particularly SIM(AP) to mimic the entire apron
dynamics), five optimization problems and ametaheuristic, altogether organized in twonested
feedback loops, our approach was unlikely to ever become extremely fast. We ran all our
experiments on Edinburgh University’s ECDF Linux Compute Cluster (Eddie) (ECDF 2021)
which is 2.00GHz Intel(R) Xeon(R) Gold, CPUwith 6138, with an allocated node consisting
of 40 cores and 768GB RAM. Each instance was allocated a maximum of 24GB RAM to
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be run in the same node simultaneously. At the end of the run, we have seen that instances
required between 14.8GB and 15.2GB RAM. For the instances corresponding to the smaller
apron size, runtimes ranged between 44 minutes and about 7 hours. For the bigger apron size
instances, runtimes ranged between just over 3 hours to about 2 days and 12 hours.While there
surely exists room for improvement, for instance by exploiting parallel computing features,
we believe these runtimes demonstrate the applicability of our simheuristic. The tactical
nature of our problem permits its solution to take place several days before the specific day
of operation. Ideally however, given that airport flight timetables feature slight adjustments
from day to day, it would be ideal for the problem to be solved during the evening or the night
immediately before the day of operation, to exploit the latest timetable updates. Our results
prove that for the smaller apron operation instances this may already be possible. The word
‘smaller’ shall not distract the reader here, as in those cases we are still talking about airport
equivalents of around 20M passengers a year, which already represent sizeable realities in the
airport industry. For the bigger apron size instances, our results also prove the applicability
of the approach, with the caveat that until faster runtimes can be achieved, the problem may
have to be solved about three days ahead of a given day of operation, i.e., based on a slightly
different timetable. The resulting task schedules and resource routing plans will thus require
specific adjustments on the day of operation, on a backbone solution that is already available
and likely to be performing well.

5.3 Comparison with the state of the art

We have formed a comparison between the performance of our approach and that presented
by Padrón et al. (2016), the closest approach to ours in terms of problem scope— see Sect. 2.
However, their methodology had to be extended, for the purpose of the comparison, to cope
with stochastic traveling and service times. More precisely, the weighted sum of tardiness
cost, waiting, and traveling times (parameters a, b, and c in Padrón et al. (2016)), are now
minimized by aiming to reach a balance between turnaround duration and resource usage.
SIM(k) has been enclosed inside the optimization algorithm to decide at each step the ordering
of the VRPTWs according to the maxResDelayk metric, where the most delayed task is
scheduled first. Solutions are accepted if the maximum delay across all team types is below
the given threshold—i.e., 3 minutes —, whilst improving the overall simulated waiting and
travel times. A set of trade-off solutions also accounting for turnaround completion times
are obtained, and the best solution in terms of the simulated cost is kept for comparison. In
addition, the model in Padrón et al. (2016) has been also adapted to make a more accurate
comparison. A minimumworkload is imposed on each team to keep routes balanced, forcing
the total service time of each route to be higher than 90% of the total average. Refilling is
required in the case of capacitated resources servicing operations which consume supplies.
Finally, the synchronization of resources is considered in the case of operations requiring
more than one team to carry them out.

Both approaches have been tested for high and medium variability with 100 simulation
replications over a set of five new instances, which in turn vary by aircraft arrival profile.
The instances were generated in a similar way to those studied so far, but only a single SP
is considered—Padrón et al. (2016) only caters for a single SP (hence the ‘E’ in the instance
notation used here probably represents a slight abuse of notation). Each shift consists of
60 aircraft, which represents a real-world case with a single SP in a medium- to large-size
airport.
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Table 6 Comparison with Padrón et al. (2016)

Instances acDelay(ST D) (min) Robustness
∑

rck

SIMe simFeed SIMe simFeed SIMe simFeed

ta60_F_1_E_H 16.43 ± 4.25 15.96 ± 4.26 NR R 42 43

ta60_FP_1_E_H 11.34 ± 3.44 11.07 ± 3.42 R R 49 47

ta60_P_1_E_H 10.32 ± 3.31 10.02 ± 3.33 NR R 55 54

ta60_PF_1_E_H 13.11 ± 3.88 12.95 ± 3.88 NR R 49 48

ta60_PP_1_E_H 11.91 ± 3.69 11.47 ± 3.63 NR R 55 56

ta60_F_1_E_M 11.28 ± 3.68 11.23 ± 3.68 R R 37 38

ta60_FP_1_E_M 6.81 ± 2.90 6.63 ± 2.95 R R 40 43

ta60_P_1_E_M 5.97 ± 2.82 5.77 ± 2.84 R R 47 47

ta60_PF_1_E_M 8.65 ± 3.31 8.51 ± 3.33 R R 41 42

ta60_PP_1_E_M 7.36 ± 3.09 7.37 ± 3.11 R R 52 53

The results of our comparison are provided in Table 6 (where confidence intervals are
95%) and Figs. 9 and 10, where the approach presented in the present paper is referred
to as Simheuristic with feedback (simFeed), while the Sequence Iterative Method (SIMe)
refers to the extension of Padrón et al. (2016) presented above. For SIMe, the cost function
parameters have been set to a = 0.9, b = 0.05, and c = 0.05, looking to mainly target the
cost of tardiness, i.e., the primary optimization objective of our methodology. The travel time
objective’s relevance can be increased to reduce the number of required resources without
affecting theSP robustness, since the stability of the solution is not compromised.Because this
configuration can result in more delayed departures for turnarounds with minimal scheduled
slacks, the solution with the shortest completion time from the obtained Pareto front can be
privileged instead.

Under high variability, SIMe could not reach robustness in four out of five instances. This
proves the importance of more accurate feedback targeting critical assignments, instead of
following an unconstrained search around neighborhoods.With respect to the acDelay(STD)
metric, the two approaches fair similarly (with 95% confidence level), although ours leads to
delays that are, on average, half a minute lower in most of the high variability instances. The
total number of teams required to run operations are comparable across the two methods.
However, in 80% of the medium-variability cases, SIMe was able to find robust solution by
deploying fewer teams. Last but not least, our approach has shown significant improvements
in terms of sumResDelaysum for all instances (see Fig. 9), as well as better values of
maxResDelay for the push-back task in 80% of the instances (see Fig. 10). The latter two
sets of results prove therefore that SPs would be able to run their operations under less
‘stretched’ conditions when adopting simFeed.

6 Conclusion

In this paper, we introduced a new constraint-based feedback approach, in the form of
simheuristics, for solving the scheduling of airport turnaround tasks and routing of ground
handling teams. In order to test the performance of our approach, we ran an extensive num-
ber of experiments representing real-world scenarios, and conducted a comparison with the
state-of-the-art approach by Padrón et al. (2016) (extended version), which added an extra
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Fig. 9 sumResDelay per team type

layer of confidence on our proposed solution technique. Although Padrón et al. (2016) pro-
vide a flexible method which is able to obtain a variety of solutions responding to conflicting
priorities, our approach can be considered superior to the state of the art in two respects:

1. The introduction of specific feedback mechanisms that automatically modify the opti-
mization models with additional cuts, which in turn are derived from two simulation
processes and help achieve robustness;

2. Its feasibility in real-world airport domains with several SPs per type of service, as we
have shown in our experiments, and following what the regulation dictates in all medium
to large-size airports.

Contrasting with other existing simheuristic approaches, we proposed a new feedback
mechanism from simulation to optimization, which consists of the generation of supple-
mentary constraints that are added to the existing CP models at two different stages of the
solution approach. The quick convergence to a robust solution through the inner loop, without
compromising the additional resource costs, is one of the major strengths of our approach.
This complements the performance of our optimization algorithms, in terms of the level of
robustness for the initial solutions fed to the inner loop. In addition, the outer loop also man-
ages to bring the solution to targeted levels of robustness within few iterations, by updating
resource requirements and objective bounds in the cases where the inner loop is not enough
to guarantee robustness for the apron overall.
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Fig. 10 maxResDelay per team type

Our work can be further improved in terms of computational efficiency in the CP-based
optimization component. Exploiting parallelization of the constraint solving process in a
cloud computing infrastructure, an active research topic (Menouer et al. 2019), has a great
potential in large-scale optimization problems such as the one in this paper.

Recent developments at the crossroads between machine learning and combinatorial opti-
mization also open new opportunities, particularly for complex and large-scale problems
consisting of various technologies engineered to work together, as in our case. Incorporating
machine learning in the solution approaches to such problems has potential for: (1) reducing
the computational effort by learning promising solutions; and, (2) making the developed
solution methodologies more adaptable to new domains by reducing the effort required for
engineering (Bengio et al. 2021). Particularly for our problem, reinforcement learning can
be used to further speed up the routing component (Bello et al. 2017) in our framework.
Furthermore, it can be used for the online extension of our problem in which the solution
developed in this paper would be used as the initial daily plan, while control and decision
making need to be performed in real time (Kuhnle et al. 2019).

Acknowledgements This work has made use of the resources provided by the Edinburgh Compute and Data
Facility (ECDF) (http://www.ecdf.ed.ac.uk/). We would especially like to thank Angela Chitzanidi for all her

123

http://www.ecdf.ed.ac.uk/


Annals of Operations Research

help setting up the resources for us. The contributions of Daniel Guimarans to this paper are not related to his
role at Amazon.

Declarations

Conflict of interest All authors certify that they have no affiliations with or involvement in any organization
or entity with any financial interest or non-financial interest in the subject matter or materials discussed in this
manuscript.

Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which
permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give
appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence,
and indicate if changes were made. The images or other third party material in this article are included in the
article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is
not included in the article’s Creative Commons licence and your intended use is not permitted by statutory
regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder.
To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.

References

ACI (2020) Aci reveals top 20 airports for passenger traffic, cargo, and aircraft movements. https://aci.aero/
news/2020/05/19/aci-reveals-top-20-airports-for-passenger-traffic-cargo-and-aircraft-movements/.
Accessed: 22.07.2021.

Ball,M., Barnhart, C., Nemhauser, G.,&Odoni, A. (2007). Air transportation: Irregular operations and control.
Handbooks in operations research and management science, 14, 1–67.

Beldiceanu, N, Carlsson, M, & Rampon, JX. (2012). Global constraint catalog, 2nd edition (revision a). Tech.
Rep. 2012:03. Computer Systems Laboratory.

Bello, I., Pham, H., Le, QV., Norouzi, M., & Bengio, S. (2017). Neural combinatorial optimization with
reinforcement learning. https://openreview.net/pdf?id=Bk9mxlSFx

Bengio, Y., Lodi, A., & Prouvost, A. (2021). Machine learning for combinatorial optimization: A method-
ological tour d’horizon. European Journal of Operational Research, 290(2), 405–421. https://doi.org/
10.1016/j.ejor.2020.07.063, https://www.sciencedirect.com/science/article/pii/S0377221720306895

Blazewicz, J., Lenstraand, J., & Rinnooy Kan, A. (1983). Scheduling subject to resource constraints: Classi-
fication and complexity. Discrete Applied Mathematics, 5, 11–24.

Bubalo, B., Schulte, F., & Voß, S. (2017). Reducing airport emissions with coordinated pushback processes:
A case study. In: Computational Logistics, pp 572–586.

Chica, M., Angel, A. J., Christopher, B., Oscar, C., & David, K. (2020). Why simheuristics? Benefits, limita-
tions, and best practiceswhen combiningmetaheuristicswith simulation. SORT-Statistics andOperations
Research Transactions, 44(2), 311–334. https://doi.org/10.2436/20.8080.02.104

de Armas, J., Juan, A. A., Marquès, J. M., & Pedroso, J. P. (2017). Solving the deterministic and stochastic
uncapacitated facility location problem: from a heuristic to a simheuristic. Journal of the Operational
Research Society, 68(10), 1161–1176. https://doi.org/10.1057/s41274-016-0155-6

ECDF (2021) Edinburgh compute and data facility. u of edinburgh. https://www.ecdf.ed.ac.uk. Accessed:
10-07-2021.

Eurocontrol (2018) Airport collaborative decision making (A–CDM). http://www.eurocontrol.int/articles/
airport-collaborative-decision-making-cdm

Evler, J., Asadi, E., Preis, H., & Fricke, H. (2021). Airline ground operations: Optimal schedule recovery with
uncertain arrival times. Journal of Air Transport Management, 92, 102021.

Ferone, D., Gruler, A., Festa, P., & Juan, A. A. (2019). Enhancing and extending the classical grasp framework
with biased randomisation and simulation. Journal of the Operational Research Society, 70(8), 1362–
1375. https://doi.org/10.1080/01605682.2018.1494527

Figueira, G., & Almada-Lobo, B. (2014). Hybrid simulation-optimization methods: A taxonomy and discus-
sion. Simulation Modelling Practice and Theory, 46, 118–134.

Fitouri-Trabelsi, S., Mora-Camino, F., Nunes-Cosenza, C. A., & Weigang, L. (2015). Integrated decision
making for ground handling management.Global Journal of Science Frontier Research: F (Mathematics
and Decision Sciences), 15(1), 17–31.

123

http://creativecommons.org/licenses/by/4.0/
https://aci.aero/news/2020/05/19/aci-reveals-top-20-airports-for-passenger-traffic-cargo-and-aircraft-movements/
https://aci.aero/news/2020/05/19/aci-reveals-top-20-airports-for-passenger-traffic-cargo-and-aircraft-movements/
https://openreview.net/pdf?id=Bk9mxlSFx
https://doi.org/10.1016/j.ejor.2020.07.063
https://doi.org/10.1016/j.ejor.2020.07.063
https://www.sciencedirect.com/science/article/pii/S0377221720306895
https://doi.org/10.2436/20.8080.02.104
https://doi.org/10.1057/s41274-016-0155-6
https://www.ecdf.ed.ac.uk
http://www.eurocontrol.int/articles/airport-collaborative-decision-making-cdm
http://www.eurocontrol.int/articles/airport-collaborative-decision-making-cdm
https://doi.org/10.1080/01605682.2018.1494527


Annals of Operations Research

Fu,MC.,Glover, FW.,April, J. (2005). Simulation optimization:A review, newdevelopments, and applications.
In: Proceedings of the Winter Simulation Conference, 2005., IEEE.

Gök, YS., Guimarans, D., Stuckey, PJ., Tomasella, M., & Ozturk, C. (2020a). Robust resource planning
for aircraft ground operations. In: Hebrard E, Musliu N (eds) Integration of constraint programming,
artificial intelligence, and operations research. Springer International Publishing, pp. 222–238.

Gök, YS., Tomasella,M., Guimarans, D., &Ozturk, C. (2020b). A simheuristic approach for robust scheduling
of airport turnaround teams. In:BaeKH, FengB,KimS,Lazarova-Molnar S, ZhengZ,Roeder T, Thiesing
R (eds) Proceedings of the 2020 Winter Simulation Conference, IEEE, pp 1336–1347. https://doi.org/
10.1109/WSC48552.2020.9383947

Gonzalez-Martin, S., Juan, A. A., Riera, D., Elizondo, M. G., & Ramos, J. J. (2018). A simheuristic algorithm
for solving the arc routing problemwith stochastic demands. Journal of Simulation, 12(1), 53–66. https://
doi.org/10.1057/jos.2016.11

Grahn, R., & Jacquillat, A. (2020). Optimal escort dispatch for airport travelers with reduced mobility. Trans-
portation Research Part C: Emerging Technologies, 111, 421–438. https://doi.org/10.1016/j.trc.2019.
12.010

Grasas, A., Juan, A. A., & Lourenço, H. R. (2016). SimILS: a simulation-based extension of the iterated local
search metaheuristic for stochastic combinatorial optimization. Journal of Simulation, 10(1), 69–77.
https://doi.org/10.1057/jos.2014.25.

Gruler, A., Panadero, J., de Armas, J., Moreno Pérez, J. A., & Juan, A. A. (2018). Combining variable
neighborhood search with simulation for the inventory routing problem with stochastic demands and
stock-outs. Computers and Industrial Engineering, 123, 278–288. https://doi.org/10.1016/j.cie.2018.06.
036

Gruler, A., Panadero, J., de Armas, J., Pérez, J. A. M., & Juan, A. A. (2020). A variable neighborhood
search simheuristic for themultiperiod inventory routing problemwith stochastic demands. International
Transactions in Operational Research, 27(1), 314–335. https://doi.org/10.1111/itor.12540

Guimarans, D. (2021). petri_net_simulator: Simulation engine based on extended Petri nets. Retrieved July
22, 2021. From https://github.com/dguimarans/petri_net_simulator

Guimarans, D., Arias, P., & Mujica Mota, M. (2015). Large neighbourhood search and simulation for disrup-
tion management in the airline industry (pp. 169–201). Cham: Springer.

Guimarans, D., Dominguez, O., Panadero, J., & Juan, A. A. (2018). A simheuristic approach for the two-
dimensional vehicle routing problem with stochastic travel times. Simulation Modelling Practice and
Theory, 89, 1–14.

Hentenryck, P. V. (2002). Constraint and integer programming in opl. INFORMS J on Computing, 14(4),
345–372.

Hur, Y., Bard, J. F., Frey, M., & Kiermaier, F. (2019). A stochastic optimization approach to shift scheduling
with breaks adjustments. Computers and Operations Research, 107, 127–139.

IATA (n.d.) Airline and location code search. https://www.iata.org/en/publications/directories/code-search/?.
Accessed: 22.07.2021.

Irawan, C. A., Eskandarpour,M., Ouelhadj, D., & Jones, D. (2021). Simulation-based optimisation for stochas-
tic maintenance routing in an offshore wind farm. European Journal of Operational Research, 289(3),
912–926. https://doi.org/10.1016/j.ejor.2019.08.032

Juan, A. A., Faulin, J., Grasman, S. E., Rabe, M., & Figueira, G. (2015). A review of simheuristics: Extending
metaheuristics to deal with stochastic combinatorial optimization problems. Operations Research Per-
spectives, 2, 62–72. https://doi.org/10.1016/j.orp.2015.03.001. http://www.sciencedirect.com/science/
article/pii/S221471601500007X

Juan, A. A., Keenan, P.,Martí, R.,McGarraghy, S., Panadero, J., Carroll, P., &Oliva, D. (2021). A review of the
role of heuristics in stochastic optimisation: frommetaheuristics to learnheuristics. Annals of Operations
Research. https://doi.org/10.1007/s10479-021-04142-9. https://doi.org/10.1007/s10479-021-04142-9

Kabongo, PC., Ferreira Ramos, TM., Leite, AF., Ralha, CG., & Weigang, L. (2016). A multi-agent plan-
ning model for airport ground handling management. In: 2016 IEEE 19th International Conference on
Intelligent Transportation Systems (ITSC), pp 2354–2359. https://doi.org/10.1109/itsc.2016.7795935

Keskin, M., Çatay, B., & Laporte, G. (2021). A simulation-based heuristic for the electric vehicle routing prob-
lem with time windows and stochastic waiting times at recharging stations. Computers and Operations
Research, 125, 105060. https://doi.org/10.1016/j.cor.2020.105060

Kuhnle, A., Schäfer, L., Stricker, N., & Lanza, G. (2019). Design, implementation and evaluation of reinforce-
ment learning for an adaptive order dispatching in job shop manufacturing systems. Procedia CIRP,. In:
52nd CIRP Conference on Manufacturing Systems (CMS), Ljubljana, Slovenia, June 12–14, 2019 81,
234–239. https://doi.org/10.1016/j.procir.2019.03.041, https://www.sciencedirect.com/science/article/
pii/S2212827119303464

123

https://doi.org/10.1109/WSC48552.2020.9383947
https://doi.org/10.1109/WSC48552.2020.9383947
https://doi.org/10.1057/jos.2016.11
https://doi.org/10.1057/jos.2016.11
https://doi.org/10.1016/j.trc.2019.12.010
https://doi.org/10.1016/j.trc.2019.12.010
https://doi.org/10.1057/jos.2014.25
https://doi.org/10.1016/j.cie.2018.06.036
https://doi.org/10.1016/j.cie.2018.06.036
https://doi.org/10.1111/itor.12540
https://github.com/dguimarans/petri_net_simulator
https://www.iata.org/en/publications/directories/code-search/?
https://doi.org/10.1016/j.ejor.2019.08.032
https://doi.org/10.1016/j.orp.2015.03.001
http://www.sciencedirect.com/science/article/pii/S221471601500007X
http://www.sciencedirect.com/science/article/pii/S221471601500007X
https://doi.org/10.1007/s10479-021-04142-9
https://doi.org/10.1007/s10479-021-04142-9
https://doi.org/10.1109/itsc.2016.7795935
https://doi.org/10.1016/j.cor.2020.105060
https://doi.org/10.1016/j.procir.2019.03.041
https://www.sciencedirect.com/science/article/pii/S2212827119303464
https://www.sciencedirect.com/science/article/pii/S2212827119303464


Annals of Operations Research

Kuster, J., & Jannach, D. (2006). Handling airport ground processes based on resource-constrained
project scheduling. Advances in Applied Artifical Intelligence, pp 166–176. https://doi.org/10.1007/
11779568_20

Latorre-Biel, JI., Ferone,D., Juan,AA.,&Faulin, J. (2020). Combining simheuristicswith petri nets for solving
the stochastic vehicle routing problem with correlated demands. Expert Systems with Applications, p
114240. https://doi.org/10.1016/j.eswa.2020.114240

Menouer, T., Sukhija, N., & Darmon, P. (2019). Towards a parallel constraint solver for cloud computing
environments. In: 2019 IEEE Fifth International Conference on Big Data Computing Service and Appli-
cations (BigDataService), pp 195–198. https://doi.org/10.1109/BigDataService.2019.00033

Musliu, N., Schutt, A., & Stuckey, PJ. (2018). Solver independent rotating workforce scheduling. Lecture
Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture
Notes in Bioinformatics) 10848 LNCS:429–445. https://doi.org/10.1007/978-3-319-93031-2_31

Norin,A.,Granberg,TA.,Värbrand, P.,&Yuan,D. (2009). Integratingoptimization and simulation to gainmore
efficient airport logistics. In: Eighth USA/Europe Air Traffic Management Research and Development
Seminar.

Official journal L 272, 25/10/1996, p 0036 - 0045 (1996) Council directive 96/67/ec of 15 october 1996 on
access to the groundhandling market at community airports. http://data.europa.eu/eli/dir/1996/67/oj

Padrón, S., & Guimarans, D. (2019). An improved method for scheduling aircraft ground handling operations
from a global perspective. Asia-Pacific Journal of Operational Research (APJOR), 36(04), 1–25. https://
doi.org/10.1142/S0217595919500209

Padrón, S., Guimarans, D., Ramos, JJ., & Fitouri-Trabelsi, S. (2016). A Bi-objective approach for scheduling
ground-handling vehicles in airports. Computers and Operations Research 71(C):34–53. https://doi.org/
10.1016/j.cor.2015.12.010

Pagès-Bernaus, A., Ramalhinho, H., Juan, A. A., & Calvet, L. (2019). Designing e-commerce supply chains:
A stochastic facility-location approach. International Transactions in Operational Research, 26(2), 507–
528. https://doi.org/10.1111/itor.12433

Pedrielli, G., Matta, A., Alfieri, A., & Zhang, M. (2018). Design and control of manufacturing systems: A
discrete event optimisation methodology. International Journal of Production Research, 56(1–2), 543–
564. https://doi.org/10.1080/00207543.2017.1412532

Rabbani, M., Heidari, R., & Yazdanparast, R. (2019). A stochastic multi-period industrial hazardous waste
location-routing problem: Integrating nsga-ii and monte carlo simulation. European Journal of Opera-
tional Research, 272(3), 945–961. https://doi.org/10.1016/j.ejor.2018.07.024

Rabe, M., Deininger, M., & Juan, A. (2020). Speeding up computational times in simheuristics combin-
ing genetic algorithms with discrete-event simulation. Simulation Modelling Practice and Theory, 103,
102089. https://doi.org/10.1016/j.simpat.2020.102089

Scala, P., Mota, M. M., Wu, C. L., & Delahaye, D. (2021). An optimization-simulation closed-loop feedback
framework for modeling the airport capacity management problem under uncertainty. Transportation
Research Part C: Emerging Technologies, 124, 102937. https://doi.org/10.1016/j.trc.2020.102937

Schultz,M., Evler, J., Asadi, E., Preis, H., Fricke, H., &Wu, C. L. (2020). Future aircraft turnaround operations
considering post-pandemic requirements. Journal of Air Transport Management, 89, 101886. https://doi.
org/10.1016/j.jairtraman.2020.101886

Shaw, P. (1998). Using constraint programming and local searchmethods to solve vehicle routing problems. In:
International conference on principles and practice of constraint programming, Springer, pp. 417–431.

Solomon, M. M., & Desrosiers, J. (1988). Survey paper–time window constrained routing and scheduling
problems. Transportation Science, 22(1), 1–13. https://doi.org/10.1287/trsc.22.1.1

Tomasella, M., Clare, A., Gök, YS., Guimarans, D., & Ozturk, C. (2019). STTAR: a simheuristics-enabled
scheme for multi-stakeholder coordination of aircraft turnaround operations. In: 2019 Winter Simulation
Conference (WSC), IEEE, pp. 488–499.

Wang, S., Che, Y., Zhao, H., & Lim, A. (2021). Accurate tracking, collision detection, and optimal scheduling
of airport ground support equipment. IEEE Internet of Things Journal, 8(1), 572–584. https://doi.org/
10.1109/JIOT.2020.3004874

Zhang, M., Matta, A., Alfieri, A., & Pedrielli, G. (2018). Simulation-based benders cuts: A new cutting
approach to approximately solve simulation-optimization problems. In: 2018 Winter Simulation Confer-
ence (WSC), pp. 2225–2236. https://doi.org/10.1109/WSC.2018.8632326

Zhao, P., Han, X., & Wan, D. (2021). Evaluation of the airport ferry vehicle scheduling based on network
maximum flow model. Omega, 99, 102178. https://doi.org/10.1016/j.omega.2019.102178

Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims in published maps and
institutional affiliations.

123

https://doi.org/10.1007/11779568_20
https://doi.org/10.1007/11779568_20
https://doi.org/10.1016/j.eswa.2020.114240
https://doi.org/10.1109/BigDataService.2019.00033
https://doi.org/10.1007/978-3-319-93031-2_31
http://data.europa.eu/eli/dir/1996/67/oj
https://doi.org/10.1142/S0217595919500209
https://doi.org/10.1142/S0217595919500209
https://doi.org/10.1016/j.cor.2015.12.010
https://doi.org/10.1016/j.cor.2015.12.010
https://doi.org/10.1111/itor.12433
https://doi.org/10.1080/00207543.2017.1412532
https://doi.org/10.1016/j.ejor.2018.07.024
https://doi.org/10.1016/j.simpat.2020.102089
https://doi.org/10.1016/j.trc.2020.102937
https://doi.org/10.1016/j.jairtraman.2020.101886
https://doi.org/10.1016/j.jairtraman.2020.101886
https://doi.org/10.1287/trsc.22.1.1
https://doi.org/10.1109/JIOT.2020.3004874
https://doi.org/10.1109/JIOT.2020.3004874
https://doi.org/10.1109/WSC.2018.8632326
https://doi.org/10.1016/j.omega.2019.102178

	Constraint-based robust planning and scheduling of airport apron operations through simheuristics
	Abstract
	1 Introduction
	2 Related literature and paper contributions
	2.1 Simheuristics and simulation-optimization
	2.2 Apron operations scheduling

	3 Problem formulations
	3.1 Turnaround task scheduling
	3.2 Team routing

	4 Simulation-optimization for the robust scheduling of apron operations
	4.1 Apron operational robustness and related metrics
	4.2 Simulation-optimization approach
	4.3 Feedback mechanisms

	5 Experiments
	5.1 Instance generation
	5.2 Algorithmic performance
	5.3 Comparison with the state of the art

	6 Conclusion
	Acknowledgements
	References




