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Abstract. This paper discusses the 2L-VRP with clustered backhauls,
a realistic extension of the classical vehicle routing problem where both
delivery and pick-up demands are composed of non-stackable items. This
problem is frequently found in real-life transportation activities, but it
has not been analysed in the literature yet. After describing the prob-
lem and reviewing some related work, we propose a hybrid algorithm for
solving it. Our approach integrates biased randomization with a meta-
heuristic framework. Our approach is tested on a set of instances derived
from the ones proposed for the 2L-VRP without backhauls.
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1 Introduction

The Vehicle Routing Problem (VRP) is a well-known combinatorial optimisa-
tion problem in which a fleet of vehicles has to service a set of customers at the
lowest possible cost [14]. The most basic variants of the VRP and richer ver-
sions have been extensively studied due to their potential applicability on real
transportation activities [2].

In this paper, we consider a realistic variant of the VRP that combines vehicle
routing and loading (packing) aspects as well as backhauls. This variant is an ex-
tension of the Two-dimensional Capacitated Vehicle Routing Problem (2L-VRP)
[8], where customers’ demands consist of a set of rectangular items that cannot
be stacked due to their weight, dimensions, or fragility. Our work was originally
motivated by real-life transportation activities at Opein (www.opein.com), a
company which provides industrial equipment to its customers, mostly in the
building-construction field. Similar operations appear in other industries where
large-sized items pick-up and delivery is also required, e.g. furniture or appli-
ances. These items must be efficiently packed on the truck surface to attain a
high vehicle’s utilisation. Thus, one needs to consider not only the items weight,
but also their length and width. For the purposes of this paper, we consider
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these items to be of rectangular shape, and we assume they cannot be piled up
or overlap.

Several variants of the 2L-VRP have been defined, depending on constraints
on the loading configuration: (i) two-dimensional sequential oriented loading
(2|SO|L), where items cannot be rotated nor rearranged en route; (ii) two-
dimensional sequential non-oriented (rotated) loading (2|SR|L), allowing items
to be rotated 90◦ when loaded on the vehicle, but not rearranged; (iii) two-
dimensional unrestricted oriented loading (2|UO|L), where items cannot be ro-
tated but can be rearranged; and (iv) two-dimensional unrestricted non-oriented
(rotated) loading (2|UR|L), allowing items rotation and rearrangement. So far,
only Fuellerer et al. [5] have solved all four problem variants. In fact, only Fu-
ellerer et al. [5] and Dominguez et al. [4] have addressed the non-oriented loading
configurations. In this work, we consider the oriented case combined with sequen-
tial loading (2|SO|L). Sequential loading might be a frequent requirement in
real-life distribution practices, since unloading and re-loading heavy machinery
might represent a significant cost in terms of both time and resources.

As an industrial machinery hire company, Opein also needs to fetch their
equipment at the end of the hiring lease. These adds a considerable burden
to their logistics and yields separate problems for delivery and pick-ups, dealing
with spatial and capacity constraints in both cases. Backhauling has been proven
to be an efficient way to achieving significant savings [7]. In the Vehicle Routing
Problem with Backhauls (VRPB), the set of customers is divided into delivery
locations (linehaul) or pick-up points (backhaul). The critical assumption is that
all deliveries must be made on each route before any pick-ups can be made, as
rearrangement of the loads on the trucks at the delivery points is not deemed
economical or feasible. This is also coherent with our selection of sequential
loading variants of the 2L-VRP. In addition, no route can contain only back-
haul customers, although linehaul-only routes are allowed. As customers can be
visited only once, all items demanded (linehaul) or supplied (backhaul) by each
customer should fit into a single vehicle (item clustering) without surpassing
vehicle’s capacity and loading surface area.

This article proposes a hybrid algorithm for solving the Two-dimensional
Capacitated Vehicle Routing Problem with clustered Backhauls (2L-VRPB),
considering sequential loading. Our approach is described in Section 2. To the
best of our knowledge, this is one of the first times this problem is tackled in the
literature. Only Malapert et al. [11] have previously studied the combination of
both problems, but does not provide any computational results. Our proposed
method combines a Large Neighbourhood Search (LNS) metaheuristic [12] with
biased-randomised versions of classical routing and packing heuristics. Biased
randomisation of heuristics refers to the use of skewed probability distributions
to induce an oriented (i.e. biased) random behaviour of the heuristic [9]. Our
results show that the proposed approach is an efficient way of solving the 2L-
VRPB with oriented loading, as presented in Section 3. We finally summarise
our main findings and contributions in Section 4.
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2 Biased-Randomised Large Neighbourhood Search

Our method combines a Large Neighbourhood Search (LNS) metaheuristic frame-
work [12] with biased-randomised versions of classical routing and packing heuris-
tics. In this framework, an initial solution is gradually improved by alternately
destroying and repairing the solution. Typically, LNS requires a reduced number
of parameters, thus reducing the need for complex and time-costly tuning pro-
cesses. Biased randomisation (BR) is included at different stages in our method.
Biased randomisation of heuristics refers to the use of skewed probability dis-
tributions to transform otherwise deterministic methods into probabilistic algo-
rithms [9]. In our Biased-Randomised Large Neighbourhood Search (BR-LNS)
approach, we apply biased-randomised techniques on routing and packing heuris-
tics, as well as in the destruction phase. For the routing component, we used a
biased-randomised version of the well-known Clarke and Wright heuristic [3].
As for solving the packing, we use randomised versions of two effective pack-
ing heuristics [1, 10]. Our destruction process makes use of splitting techniques
similar to those proposed by Juan et al. [9].

We start our algorithm by generating an initial solution by means of the
Pack-and-Route procedure, explained in detail later. This method provides a
complete routing solution with packing plans for both linehaul and backhaul
customers. The algorithm then starts an iterative process aiming at improving
the best solution by combining partial destruction and reconstruction meth-
ods. In our method, a set of adjacent routes is extracted from the current so-
lution using a probabilistic selection process and different geometric criteria [9].
Nodes belonging to these routes are then removed from the solution. This set
of customers, together with associated demands, constitutes a sub-instance of
the original 2L-VRPB of smaller size, predictably much easier to solve due to
the NP-Hard nature of the problem. Sub-problems are also solved by means of
the Pack-and-Route procedure. The resulting sub-solution is then merged with
non-extracted routes to generate a new solution of the original problem. If this
new solution improves the incumbent one, we accept it as the new current solu-
tion. Finally, the algorithm returns the best found solution when it exhausts its
allowed execution time.

The logic for solving the 2L-VRPB is encoded in the Pack-and-Route method.
As mentioned, we combine biased-randomised versions of well-known heuristics
to tackle routing and packing problems in an integrated manner, contrary to
most two-stage approaches for the 2L-VRP.

We start our method by generating an initial dummy solution as described
in the savings heuristic [3], i.e. we create a return trip from the depot to each
customer using as many vehicles as necessary. Next, we compute the savings
associated with each edge and sort them in descending order, as specified in
the heuristic. In this process, we omit all edges connecting backhaul to linehaul
customers, as sequencing restrictions are imposed in the problem. By ruling
out backhaul-linehaul edges, we prevent our algorithm to consider forbidden
moves, reducing the number of required feasibility checks. Once the savings list
is computed, we rearrange its elements applying a biased-randomised process,
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so edges associated with higher savings are more likely to be ranked at the top
of the list. In our case, a geometric probability distribution, driven by a single
parameter α (0 < α < 1), is used to induce this skewed behaviour. The biased
randomisation of the savings list allows edges to be selected in a different way
each time the process is called, while maintaining the logic behind the heuristic
[9]. At this point, the algorithm starts an iterative route-merging process. At
each iteration, the edge at the top of the savings list is selected. If this edge
connects a linehaul customer to a backhaul location, and any or both routes
containing these customers is already a mixed linehaul-backhaul route, the edge
is discarded. Since all backhaul visits should be done after servicing all linehaul
customers in a route, only one such edge can be included per route. Otherwise,
both routes are merged yielding a new mixed linehaul-backhaul route. In this
case, capacity constraints are not considered for the merging, as by definition
the vehicle will be empty after visiting all assigned linehaul customers. If the
selected edge is a linehaul-to-linehaul or backhaul-to-backhaul link, routes will
be merged subject to: (i) there is enough weight capacity in the vehicle to carry
all items from both routes; and (ii) they can be conveniently loaded, i.e. without
overlapping and keeping the sequential order defined by the merged route.

Evaluating packing feasibility might become a time-consuming process. In
our approach, we use biased-randomised versions of two well-known effective
heuristics: Best-Fit [1] and Touching Perimeter [10]. In order to speed up the
packing feasibility checking, we use a fast-access memory-based method to deter-
mine if we have already computed a packing solution for the same configuration.
If the current configuration is already included in the cache memory, routes
are merged. Otherwise, we first use the biased-randomised Best-Fit heuristic to
compute a packing solution. If the current configuration is yielded as unfeasible
by the Best-Fit method, a biased-randomised Touching Perimeter heuristic is
called. In both cases, we use a geometric distribution to skew the search, con-
trolled in the two heuristics by a single parameter β (0 < β < 1). The process is
repeated a number of times (maxPackIter) before the current configuration is
finally disregarded as feasible. Whenever any of the two heuristic methods finds
a feasible packing solution, it is stored in the packing cache memory and the
process is stopped.

Finally, when a complete solution is computed, we use a fast memory-based
technique to possibly improve its associated routes. As in the packing case, we
store previously computed routes and packing plans for a given set of customers
in a fast-access cache memory. If the obtained solution contains the same set with
a higher cost, the route stored in the cache memory is retrieved and the solution
is updated. Otherwise, we add (or update) the route to the cache memory for
subsequent iterations.

Notice that an important advantage of our approach is its relative simplic-
ity. Our method only uses three parameters, namely α, β, and maxPackIter.
This significantly reduces the need for fine-tuning processes and its sensitivity
to particular problem characteristics, providing a robust method able to per-
form efficiently across different instances. Moreover, its pseudo-random nature
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makes it suitable for parallelisation, thus providing high-quality results in low
computational times.

3 Computational Experiments

Our algorithm has been implemented in Java. All experiments were run in a
standard PC with an Intel Core i3 processor at 3.4 GHz and 8 GB RAM. The
algorithm was executed on the Netbeans platform for Java over Windows 7.

As far as we are concerned, we present the first results obtained for the 2L-
VRPB. Therefore, we could not find benchmark instances for the problem. Using
the method described by Toth and Vigo [13] to generate VRPB instances from
classic Euclidean VRP ones, we extended the 2L-VRP benchmark instances [8,
6]. These benchmark sets contain 5 classes with 36 instances each. We have gen-
erated two new 2L-VRPB instances for each 2L-VRP one. These new instances
contain 50% and 80% linehaul customers, represented by the linehaul/backhaul
ratios 1/1 and 4/1, respectively. Tables 1 and 2 present results for the two line-
haul/backhaul configurations considering sequential oriented loading (2|SO|L).
In all cases, we present for each instance and each class the best-found solution
obtained with our BR-LNS algorithm and the time required to reach it. As it
can be observed, our method is able to solve the proposed benchmark instances
in reasonably low computational times. Remarkably, it does so by means of a
rather simple approach with very few parameters.

Figure 1 shows a comparison of costs, by class and backhaul configuration
level, for the 2|SO|L. Notice that the solutions obtained in the second configura-
tion scenario are slightly worse than the ones obtained in the first one. In other
words: the cost of some instances tends to increase a little bit as configurations
with more linehaul customers are considered.

4 Conclusions

This paper presents a hybrid approach for solving the two-dimensional VRP
with clustered backhauls (2L-VRPB). This problem can be found in practical
transportation applications, such as the one that motivated this work. To the
best of our knowledge, this is the first time this realistic extension of the two-
dimensional VRP (2L-VRP) is tackled in the literature.

We propose a hybrid algorithm combining Large Neighbourhood Search with
biased-randomised versions of well-known routing and packing heuristics. The
search is controlled by the LNS framework, which partially destroys a solution
by using splitting techniques and rebuilds it with a combination of skewed prob-
ability distributions to better guide the search. Packing heuristics are integrated
in the routes construction, contrary to most two-stage methods from previous
approaches. Our algorithm is also enhanced with memory-based techniques for
both routing and packing processes, improving its execution performance with-
out penalising the quality of the generated solutions.
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Table 1. Results on the 36 instances of the 2L-VRPB – 1/1 – 2|SO|L

Class 1 Class 2 Class 3 Class 4 Class 5
Instance Sol. t (s) Sol. t (s) Sol. t (s) Sol. t (s) Sol. t (s)

1 301.99 7.34 308.76 0.16 308.76 0.01 312.12 8.53 307.63 0.02
2 308.76 0.01 308.76 0.00 308.76 0.01 308.76 0.01 308.76 0.01
3 335.54 0.00 336.40 0.04 345.66 0.14 335.54 0.01 335.54 0.01
4 375.12 0.00 375.12 0.01 375.12 0.02 375.12 0.00 375.12 0.00
5 372.12 0.01 376.84 0.13 373.71 0.01 372.12 0.02 372.12 0.02
6 432.3 0.01 428.88 0.07 432.30 0.00 432.30 0.02 432.30 0.02
7 689.32 6.30 692.26 0.01 691.85 0.01 699.27 0.00 689.32 3.70
8 689.32 2.52 698.87 0.00 718.89 0.11 692.26 0.24 677.52 3.74
9 494.03 1.50 501.48 0.01 494.03 2.61 500.57 1.39 494.03 9.49
10 502.77 2.42 610.45 0.08 536.29 14.68 589.43 18.85 571.68 23.03
11 502.77 2.18 603.37 0.27 581.42 6.22 644.27 2.46 573.31 26.99
12 471.46 0.00 482.63 0.04 471.46 0.00 475.76 0.06 471.46 0.00
13 2,276.57 4.63 2,399.98 1.28 2,384.40 9.30 2,354.57 10.49 2,326.80 37.73
14 751.69 0.17 870.04 17.33 878.23 15.98 777.60 48.01 771.31 31.59
15 751.69 0.18 850.73 1.00 853.62 20.42 909.02 26.86 907.13 22.48
16 543.09 0.02 549.86 0.69 544.24 17.32 543.39 0.11 542.60 0.17
17 638.14 0.01 635.94 0.11 635.94 0.06 638.14 0.21 635.94 0.15
18 834.86 1.06 937.03 54.06 919.65 67.34 918.57 16.46 845.35 21.74
19 562.83 49.32 655.44 2.79 655.97 35.19 637.33 78.63 617.50 0.16
20 319.72 71.97 419.92 93.00 397.05 2.33 398.26 32.33 375.20 95.47
21 721.78 52.93 876.37 21.22 892.75 85.88 844.89 58.94 783.33 95.90
22 721.68 32.36 872.10 98.03 862.65 44.82 899.02 64.36 805.17 23.92
23 746.9 89.69 880.09 74.67 860.55 30.76 862.22 146.63 802.86 20.87
24 838.96 0.31 920.51 105.86 890.40 36.03 896.58 71.11 844.15 146.21
25 889.59 183.73 1,144.05 20.28 1,102.54 81.73 1,091.96 142.24 984.61 74.50
26 779.21 51.93 1,031.22 36.97 1,039.09 177.26 1,096.63 184.96 903.86 175.61
27 964.88 175.88 1,073.48 157.05 1,089.58 86.97 1,058.67 175.05 1,011.70 142.89
28 1,022.91 215.51 1,780.33 120.89 1,801.48 149.40 1,813.13 233.55 1,616.89 187.81
29 1,217.36 241.36 1,727.00 203.58 1,638.68 245.21 1,667.36 163.74 1,625.58 186.08
30 1,050.11 219.99 1,415.14 101.35 1,396.25 271.84 1,385.71 51.51 1,236.57 229.24
31 1,216.24 233.28 1,686.66 115.50 1,698.68 240.84 1,730.54 265.37 1,545.89 254.49
32 1,202.83 132.09 1,700.82 262.50 1,679.53 270.55 1,687.62 230.04 1,521.70 183.21
33 1,213.71 236.67 1,716.05 272.15 1,715.24 191.94 1,732.86 271.81 1,505.30 270.56
34 702.84 271.66 890.10 236.21 908.90 261.96 877.18 249.25 808.02 247.37
35 747.01 269.40 1,006.72 197.76 1,020.11 245.65 1,027.38 296.90 893.69 264.60
36 488.96 95.28 1,090.58 262.33 1,126.35 251.71 1,052.64 299.11 946.13 265.28
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Table 2. Results on the 36 instances of the 2L-VRPB – 4/1 – 2|SO|L

Class 1 Class 2 Class 3 Class 4 Class 5
Instance Sol. t (s) Sol. t (s) Sol. t (s) Sol. t (s) Sol. t (s)

1 259.97 0.00 259.97 0.00 260.22 0.01 275.25 1.50 259.97 0.01
2 299.64 0.00 314.14 0.00 322.42 0.00 299.64 0.00 299.64 0.00
3 349.12 0.00 350.83 0.00 367.86 0.03 356.76 0.04 349.12 0.00
4 415.83 0.00 395.42 0.00 395.42 0.75 410.20 0.01 395.42 0.01
5 376.68 0.00 376.68 0.00 376.68 0.01 385.74 0.01 376.68 0.01
6 432.83 0.00 432.85 0.00 432.83 0.03 432.83 0.06 432.83 0.01
7 598.68 0.00 723.39 1.29 674.70 0.01 674.28 0.73 631.28 3.62
8 598.68 0.00 683.64 0.01 713.49 0.18 660.95 0.01 603.43 0.73
9 571.75 0.18 573.06 0.00 573.06 0.01 571.75 0.41 571.75 0.09
10 512.06 0.02 642.58 4.31 613.95 8.29 663.73 5.52 609.63 1.04
11 512.06 0.13 662.43 2.10 663.37 2.09 737.89 0.34 614.38 4.37
12 523.41 0.01 546.33 0.06 524.53 0.00 534.87 5.43 522.56 0.40
13 1,997.84 0.04 2,489.25 8.45 2,468.80 40.16 2,518.66 1.46 2,286.38 39.29
14 746.28 0.81 1,017.55 3.15 879.84 51.01 900.65 38.14 863.12 30.93
15 746.28 0.80 963.49 4.84 1,024.84 23.10 1,085.14 31.10 1,002.07 8.00
16 613.19 0.01 614.67 0.02 610.99 0.11 622.18 0.70 610.99 0.10
17 725.83 0.01 734.15 0.07 723.17 4.70 724.47 0.43 722.62 0.37
18 791.4 2.34 1,000.84 3.21 971.94 8.75 989.86 86.07 909.63 81.39
19 567.89 0.57 698.50 57.67 742.96 20.53 722.10 68.21 637.06 68.32
20 288.9 94.58 460.16 92.13 466.63 62.67 500.80 97.53 445.67 64.52
21 703.81 111.97 965.26 70.23 1,035.99 51.30 906.63 131.54 848.91 137.90
22 733.42 3.33 990.59 31.10 968.10 134.53 996.26 143.92 888.16 92.15
23 794.85 5.37 958.56 82.44 986.13 10.50 956.42 118.70 873.26 132.09
24 904.53 1.15 1,061.97 60.80 999.72 69.61 1,002.35 122.82 922.58 140.82
25 859.97 4.40 1,312.22 127.47 1,255.11 170.31 1,271.21 168.07 1,088.57 121.26
26 833.59 115.71 1,259.05 54.06 1,229.65 192.96 1,283.55 79.58 1,125.75 186.52
27 1,004.20 130.34 1,245.97 18.04 1,283.22 162.44 1,207.54 176.60 1,149.52 151.64
28 1,059.68 145.08 2,303.88 242.63 2,334.18 231.19 2,186.90 245.29 2,047.11 226.90
29 1,210.77 220.03 2,009.95 165.31 1,986.48 244.40 1,905.98 249.37 1,935.20 248.51
30 1,067.26 52.52 1,687.05 271.49 1,663.83 254.09 1,642.08 260.73 1,445.86 215.40
31 1,260.15 127.00 2,048.22 130.41 2,029.25 257.27 2,141.65 273.80 1,864.63 153.84
32 1,260.15 126.56 2,038.96 273.48 2,026.01 245.78 2,005.18 270.62 1,795.95 250.65
33 1,295.28 118.13 2,081.76 251.38 2,191.51 274.83 2,147.33 273.46 1,880.20 219.55
34 654.71 197.28 1,066.72 185.72 1,087.44 269.66 1,078.34 298.62 946.10 297.71
35 839.02 109.90 1,253.38 266.50 1,308.31 245.42 1,318.93 255.82 1,146.00 187.40
36 584.62 283.14 1,500.73 278.22 1,494.50 298.95 1,448.06 294.29 1,309.89 295.62
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Fig. 1. Comparison of results for the 2L-VRPB with and without items rotation.

We have tested our BR-LNS algorithm in a new set of instances generated for
the 2L-VRPB. As our results prove, we are able to solve them in very competitive
computational times.
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