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Abstract. In this work we consider an information-based system to re-
duce metropolitan rail congestion in Melbourne, Australia. Existing ap-
proaches aim to reduce congestion by asking commuters to travel outside
of peak times. We propose an alternative approach where congestion is
reduced by enabling commuters to make an informed trade-off between
travel time and ride comfort. Our approach exploits the differences in
train frequency and stopping patterns between stations that results in
trains, arriving within a short time of each other, to have markedly differ-
ent levels of congestion, even during peak travel periods. We show that,
in such cases, commuters can adjust their departure and arrival time by a
small amount (typically under 10 minutes) in exchange for more comfort-
able travel. We show the potential benefit of making this trade-off with
a discrete optimisation model which attempts to redistribute passenger
demand across neighbouring services to improve passenger ride comfort
overall. Computational results show that even at low to moderate levels
of passenger take-up, our method of demand shifting has the potential
to significantly reduce congestion across the rail corridor studied, with
implications for the metropolitan network more generally.

1 Introduction

Home to more than 4.8 million residents, Melbourne is Australia’s second-largest,
and fastest growing city. Melbourne residents enjoy access to an extensive pub-
lic transportation network which includes metropolitan rail, light rail and bus
services. According to Public Transport Victoria (PTV)1 there were 565 mil-
lion trips on public transport in the Melbourne metropolitan area in the year
from 1 July 2017 – 30 June 2018 [2]. Of these, the largest share belongs to
rail, with 240.9 million trips recorded. One of the major challenges facing trans-
port planners in Melbourne is that rail passengers often experience high levels
of congestion, especially during morning and afternoon peak periods. Attempts
to tackle Melbourne’s congestion tend to focus on the addition of more infras-
tructure, that is, rail lines and trains. However, this approach is expensive, and

1 PTV is the government agency responsible for providing and coordinating public
transport for Melbourne and across the state of Victoria.
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sometimes impossible due to limitations on available space and other resources.
Two alternative strategies, both widely studied in the research literature, are:
(i) optimisation-based demand management and; (ii) demand management via
incentives. We briefly discuss each.

Optimisation-based demand management, sometimes called passenger flow
control, works by directing passengers to services based on their planned jour-
ney; e.g. [14, 8]. This body of research shows that passenger load can be effectively
moved downstream until the demand in a saturated system is resolved. Disad-
vantages of this type of approach include high planning overheads, as passenger
flows need to be optimised in near real time, and a dependence on significant
physical infrastructure, such as waiting areas, boarding areas and designated
entries. This approach also presumes that passengers will tolerate it.

Incentive-based demand management, by comparison, exploits trade-offs that
exist between passenger preferences for time, comfort and cost. The idea is to en-
courage passengers to travel during periods of reduced demand and to discourage
travel during periods of peak-demand. Studies in this area often apply equilib-
rium modelling, seeking to quantify, under certain conditions, the dis-utility of
travelling early or late against the cost of discomfort and the willingness to pay
[12, 17]. The main disadvantage of such in-principle economic models is that pro-
posed fare structures are complicated and their actual effects on real schedules
are usually not clear. When applied in practice, incentive-based systems employ
more simplified structures. One example is PTV’s Early Bird train travel [9] a
scheme that allows Melbourne passengers to ride for free provided they arrive
at their destination before 7:15am on weekdays. Another example is Singapore’s
INSINC [13] system, which rewards passengers who shift their travel away from
periods of peak demand. These approaches report varying degrees of success but
related studies [16, 9] show that relatively high reductions in fare are sometimes
necessary to overcome the reluctance of some passengers to avoid peak periods.

In this work we consider a different approach where we aim to shift demand
within peak periods by encouraging commuters to make informed trade-offs. We
are motivated by evidence from the literature which suggests that passengers are
willing to incur some additional travel time in order to secure a more comfortable
trip [7, 6, 3, 5]. In the case of Melbourne, electronic noticeboards at rail stations,
and also travel apps, show only the time of the next departure. However, many
stations are serviced by multiple lines, including some with low levels of occu-
pancy, even during peak periods. We posit that, if congestion information was
made available, passengers could make informed trade-offs based on preferences
and needs. For example, pregnant, elderly, or disabled passengers might prefer
a longer seated trip to a shorter one that involves standing.

Working with our industrial partner, PTV, we undertake a capacity-based
study to investigate the congestion-reducing benefits from such an information
scheme including under varying degrees of passenger uptake. Our approach relies
on travel-card data, from which we construct a detailed congestion model of two
rail lines in the Melbourne network: Werribee and Williamstown. We combine
this data with an optimisation-based model that measures the impact of passen-
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Fig. 1: The south-western region of the Melbourne Metropolitan Rail Network
comprising the Werribee and Williamstown lines.

ger demand shifting on congestion during times of peak demand. We show that
with even modest levels of uptake (e.g., 20%) congestion measures can be almost
halved. Meanwhile with an uptake of 60% we show that overcrowded trains can
be almost entirely eliminated.

2 Background: The Melbourne Rail Network

The Melbourne Metropolitan Rail Network is a large hub-and-spoke system com-
prised of 217 stations, connected by 837km of rail [1]. Figure 1 shows the south-
western region of this network, the focus of our study.

The network consists of 16 lines which connect at a central terminus, Flinders
Street Station. Trains in the network operate from 5am to midnight on weekdays
and until 1am on weekends. Morning peak demand occurs between 7:00am and
9:30am, and afternoon peak between 3:30pm and 7:00pm week days.

The network is serviced by a fleet of more than 200 trains which are managed
by Metro Trains, a privately-owned rail operator. The fleet is currently made up
of 3 models [1]. These are: Comeng, having 536–556 seats, with a target capacity
of 800 passengers; and X’Trapolis and Siemens, both having 528 seats and
target capacity of 900 passengers. Any train which exceeds its target capacity
is considered to be in breach of the service agreement between PTV and Metro
Trains. Breach events are undesirable because they typically cause delays at
stations and increase the risk of accidents when passengers are boarding and
disembarking. Systematic breaching can result in penalties for the rail operator.
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3 Modelling Assumptions

3.1 Trains and Rail Network

We focus our attention on the south-western section of the Melbourne Rail Net-
work (Figure 1). This network consists of two rail lines, with origins at Werribee
and Williamstown, and three distinct types of train services:

– Werribee Express services, which originate at Werribee, have a frequency of
approximately 10 minutes and run non-stop between the stations of Laverton
and Newport and between Newport and Footscray.

– Williamstown services, which originate at Williamstown, have a frequency
of approximately 20 minutes and stop at all stations.

– Laverton services, which originate at Laverton, have a frequency of approx-
imately 20 minutes and stop at all stations, running through the so-called
Altona loop.

We study demand shifting for the morning peak period. We consider all sched-
uled trains and we work with actual arrival times (cf. departure times) at each
station, as measured by our industrial partner PTV. Additionally, owing to the
configuration of the rail lines, overtaking is not possible. That means the relative
order of arrival of trains at each station is fixed.

3.2 Measuring Congestion

In this section we discuss the region we study, the definitions of different levels
of congestion, and the way we translate trip data into congestion measurements.

In the modelling that follows, we consider 5 levels of congestion. We use the
capacity of Comeng trains as a reference, since these trains service the south-
western rail network. We believe that this does not affect the generality of our
conclusions. The congestion levels we use accord to PTV’s own scale for conges-
tion, and are broadly in line with those reported in [6].

1. sparse 0 to 264 passengers: no more than half seated capacity.
2. seated 265 to 528 passengers: fewer passengers than seats.
3. standing 529 to 662 passengers: more passengers than seats, but less than

half standing capacity.
4. target 663 to 800 passengers: more passengers than seats, and more than

half standing capacity.
5. breach 800+ passengers.

3.3 Data collection and train occupancy calculation

We calculate passenger counts on each train service from smart card data, which
records the location and times at which a passenger entered and exited the rail
system by touch on and touch off. The data used for this project comprised
3.6m passenger touch on and 3.5m touch off instances throughout Melbourne’s
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rail network from January 30 to February 5 2017. We impute train occupancy
from these data by assigning passenger trips to specific train services through
the entry and exit stations during the corresponding time window using the
following protocol. In each 10-minute period, at each station:

1. Count the passengers arriving (touch on); identify each passenger’s destina-
tion (touch off location).

2. Identify eligible services stopping at the current station (during the current
period, or immediately after if no service is available during the current
period) and stopping at the touch off station.

3. Remove passengers disembarking at their touch off station.

4. Assign waiting passengers equally to eligible services.

5. Record congestion level.

We assume that city-bound passengers exiting the train system outside the
south-western region remain on board the train until the last hub. For the pur-
pose of our study, this was Footscray. Figure 2a shows train occupancy during the
Thursday, February 2, 2017 morning peak period calculated using this method.
(Thursday has the busiest morning peak; 15,927 trips were identified over this
period.) Passenger occupancy (shaded to show congestion) highlights the over-
crowding that motivated this study.

4 Greedy demand shifting

To observe the potential reduction in congestion due to passenger demand shift-
ing, we modify the passenger load calculation to simulate passengers choosing
less congested adjacent services at Laverton and Newport. This includes trains
arriving up to 10 minutes earlier and departing 10 minutes after the current time
period. We use greedy shifting, moving as many boarding passengers as possible
in order to keep the congestion score of the current train and alternative services
to a minimum. Treating levels 4 and 5 as congested, we use the same protocol
as shown above, modified as follows:

4. Check congestion level of the incoming train; Distribute boarding passengers
equally to all eligible services; for congested services, reassign a proportion
of these passengers equally to all the non-congested trains arriving during
the interval from 10 minutes prior, to 10 minutes post current time window.

Figure 2b shows passenger occupancy and congestion during the February
2, 2017 morning peak after greedy demand shifting is applied at Laverton and
Newport. We only present results up to 8:30am to save space but note that con-
gestion levels are low for all services departing any station in the south-western
rail corridor after this time, with available seating in all cases. Comparing the
two figures it is evident that the number of breach incidents decreases from 13
in the original case to 11 when greedy shifting is adopted.
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Dep. Time Werribee Laverton Altona Williamstown Newport Footscray
7:04 435 530 - - 707 691
7:13 171 242 238
7:16 108 256 - 499 487
7:19 532 662 - - 900 877
7:29 620 749 - - 971 933
7:35 202 450 433
7:38 159 358 - 578 554
7:39 648 785 - - 1003 964
7:49 1001 1087 - - 1233 1183
7:57 215 488 463
8:00 103 266 - 569 539
8:02 791 855 - - 1091 1049
8:11 480 545 - - 722 699
8:19 144 388 371
8:22 101 194 - 374 360
8:24 425 485 - - 640 621
8:33 383 435 - - 559 538

(a) Actual passenger count and congestion levels.

Dep. Time Werribee Laverton Altona Williamstown Newport Footscray
7:04 435 530 - - 707 691
7:13 171 242 238
7:16 108 256 - 499 487
7:19 532 662 - - 900 877
7:29 620 749 - - 742 704
7:35 202 565 548
7:38 159 358 - 808 783
7:39 648 785 - - 774 735
7:49 1001 961 - - 945 895
7:57 215 684 659
8:00 229 392 - 858 828
8:02 791 762 - - 750 709
8:11 480 592 - - 851 828
8:19 144 471 453
8:22 148 241 - 420 407
8:24 425 485 - - 640 621
8:33 383 435 - - 559 538

(b) Passenger count and congestion levels with greedy demand shifting.

Fig. 2: Passenger counts and congestion levels during the morning peak for all
services operating on the Werribee-Williamstown-Footscray network on Febru-
ary 2, 2017.

5 Reducing Congestion with Discrete Optimisation

Although the greedy approach shows some potential benefit from demand shift-
ing, it does not reveal the greatest reduction in congestion that could be achieved
if a whole network view was taken. In this section we describe a discrete opti-
misation model which assigns passengers to trains to reduce congestion globally.
This enables us to determine the maximum reduction in congestion that could
be achieved by demand shifting.

The principal data set used by the model contains trip information quantised
into time blocks of 10 minutes. This shows, for each time block, the number
of city-bound passengers travelling between each pair of stations during that
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period. From this, a flow network is constructed, which assigns the number
of passengers embarking and disembarking for each service and each station.
This enables the occupancy of each train to be calculated along its journey.
Passengers are constrained to maintain a feasible trip across the network that
is similar to their recorded trip touch on and touch off times. The objective is
to minimise the congestion in the network. The optimal solution automatically
reroutes passengers to reduce congestion. We recognise the solution given by
this model represents an idealisation not achievable in practice, as it is based
on perfect future knowledge, and assumes complete compliance by passengers.
However, it does show the degree to which congestion could be reduced in a
perfect situation.

The core sets of the model are given below, along with the name we shall use
for indices that refer to elements in that set

ST, st The set of stations considered
L, l The set of lines considered
B, b The set of time blocks considered
S, s The set of train services considered

The core data of the problem model is given by

mpax ∈ Z Maximum passengers on any service
seql ⊆ ST The sequence of stations for line l
lines ∈ L Which line is used by service s
tripb,st1,st2 ∈ Z The number of passengers commencing a jour-

ney at station st1 in time block b to go to st2
compb,st,s ∈ {true, false} Is it possible for a passenger to enter service s

at station st at time block b

The compatibility, compb,st,s, of a station st and time block b with a service
s is determined as follows. Assuming we are allowing demand shifting be able to
change passenger arrival times at their start station by no more than δ minutes
from the time shown by recorded trip data, then s is compatible with b and st if
the departure time for s from station st is no earlier than δ minutes before the
time block commences, and no later than δ minutes after the time block ends.
If we disallow forward shifting of passenger arrivals (i.e., assigning passengers
to a train departing earlier than their touch on time), then only services that
arrive between when the time block commences, and up to δ minutes later are
compatible.

We assume sequence functions first(Q) returning the first element q1 of a
sequence Q = [q1, q2, . . . , qn], and succ(Q) returning the set of adjacent pairs
{(q1, q2), (q2, q3), . . . , (qn−1, qn)} of sequence Q. We compute auxiliary data

onb,st =
∑

st′∈ST tripb,st,st′ The number of passengers entering the system
at station st at time b

off b,st =
∑

st′∈ST tripb,st′,st The number of passengers leaving the system
at station st that entered at time b

visitss,st = st ∈ seqlines Whether service s visits the station st
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The principle decisions enter and exit and auxiliary decision variables pax
are defined below. They are all constrained to lie in the range 0..mpax.

enterb,st,s The number of passengers entering service s at sta-
tion st at time block b

exitb,st1,st2,s The number of passengers exiting service s at station
st2 that entered at station st1 in time block b

paxst,s The number of passengers on service s when depart-
ing station st

We are now in a position to define the constraints of the problem.

enterb,st,s = 0 ∀b ∈ B, st ∈ ST, s ∈ S,¬visitss,st (1)

exitb,st1,st2,s = 0 ∀b ∈ B, st1, st2 ∈ ST, s ∈ S,¬visitss,st1 (2)

exitb,st,st,s = 0 b ∈ B, st ∈ ST, s ∈ S (3)

paxst,s = 0 s ∈ S,¬visitss,st (4)

Equation (1) ensures no passengers enter a service at a station it does not visit.
Similarly, equation (2) ensures no passengers exiting a service commence at a
station it does not visit. Equation (3) ensures no one enters and exits a service
at the same station. Equation (4) ensures that the passengers for a station st
not visited by a service s is 0.∑

b∈B,s∈S

enterb,st,s =
∑
b∈B

onb,st ∀st ∈ ST (5)

∑
b∈B,st1∈ST,s∈S

exitb,st1,st2,s =
∑
b∈B

off b,st2 ∀st2 ∈ ST (6)

∑
s∈S,compb,st,s

enterb,st,s = onb,st ∀b ∈ B, st ∈ ST (7)

∑
s∈S

exitb,st1,st2,s = tripb,st1,st2 (8)

exitb,st1,st2,s ≤ enterb,st1,s ∀b ∈ B, st1, st2 ∈ ST, s ∈ S (9)

paxst,s =
∑
b∈B

enterb,st,s s ∈ S, st = first(seqlines) (10)

paxst2,s = paxst1,s +
∑

b∈B enterb,st2,s −
∑

st3∈ST,b∈B exitb,st3,st2,s
∀s ∈ S, (st1, st2) ∈ succ(seqlines)

(11)

Equation (5) ensures that all passengers arriving in the system enter a train.
Equation (6) similarly ensures that all passengers leaving the system at a station
st2 beginning at st1 are exiting a service. Equation (7) ensures that every pas-
senger entering the system at a station gets on a compatible service. Equation
(8) ensures that the number of trips from station st1 to st2 commencing in block
b matches the travel data. Equation (9) ensures that no more passengers take a
trip from st1 to st2 on service s commencing in block b than enter the service.
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Equation (10) ensures the passengers on the service s at its starting station are
correct. Equation (11) ensures the passengers on the service s at later stations in
the line are correct by adding in newly entering passengers and removing exiting
passengers.

Finally we can specify the objective for optimising. We consider two objec-
tives. The first is based on PTV’s own congestion scale. It just counts the number
of stations and services which reach each capacity level, and penalises each ca-
pacity level by a rapidly increasing amount. Let sparse = 264, seated = 528,
standing = 662 and target = 800, then the first objective is simply:

minimize

∑
st∈ST,s∈S,paxst,s>sparse,paxst,s≤seated 10

+
∑

st∈ST,s∈S,paxst,s>seated,paxst,s≤standing 100

+
∑

st∈ST,s∈S,paxst,s>standing,paxst,s≤target 1000

+
∑

st∈ST,s∈S,paxst,s>target 10000

(12)

The objective above is deceptive: a train running at seated + 1 passengers
is given the same objective cost as one running at standing. For example, this
means that once a train needs more than seated passengers the objective will
try to fill it to standing.

An alternative objective builds a continuous piecewise linear function which
defines a cost for each passenger load, which grows steadily with higher capacities
increasing faster. The function we use is

cost(p) =

0 p ≤ sparse
p− sparse p > sparse, p ≤ seated
5× (p− seated) + cost(seated) p > seated, p ≤ standing
10× (p− standing) + cost(standing) p > standing, p ≤ target
100× (p− target) + cost(target) p > target

where cost(level) represents the cumulative costs per passenger before reaching
the current congestion level. Then the objective is simply

minimize
∑

st∈ST,s∈S
cost(paxst,s) (13)

Restricting Passenger Movement The model as defined above allows all pas-
sengers to be shifted from their original service. While this provides a strong
lower bound on possible congestion, we are unlikely to be able to enforce this
behaviour. We also consider cases where only some percentage p of the customers
can be moved. This reflects an assumption that any take-up in advice will only
ever be followed by at most p% of customers. Adding this to the model simply
requires adding lower bounds to the enterb,st,s variables to be (100− p)% of the
baseline ridership on each service (as computed in Section 3.3).
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6 Experiments and Results

6.1 Design of Experiments

In the experiments we compare the raw congestion values determined by the
train occupancy calculation of Section 3.3, with the congestion values where we
enact greedy policies that divert passengers away from congested services, as
well as against the discrete optimisation model of Section 5.

The discrete optimisation model is written in MiniZinc [11] and solved with
the Gurobi 8.1.0 mixed integer programming solver [4]. Note that the entire
model of Section 5 is linear, except for the piece-wise linear objectives. We rely
on MiniZinc’s automatic linearisation to encode the objective for Gurobi.

We consider experiments where we are allowed to shift 100% of passengers,
which gives us a lower bound on possible congestion. To be more realistic we
also consider where at most some smaller percentage p% of customers can have
their behaviour changed. We examine the cases where p = 20, 40, 60, and 80.
With p = 0 there is no shifting possible, we just show the calculated congestion
levels.

Forward shifting of passengers, which requires some way of informing pas-
sengers to arrive earlier at the station, is more complex than simply backward
shifting, which just requires information available at the station. Our experi-
ments consider allowing both backward and forward shifting of passengers, as
well as disallowing forward shifting.

To reduce the computational complexity of the optimisation model we also
simplify the network by merging passenger data for stations where there is no
potential for demand shifting. Therefore, Werribee incorporates Hoppers Cross-
ing, Williams Landing and Aircraft; Williamstown incorporates Williamstown
Beach and North Williamstown; Newport incorporates Spotswood, Yarraville
and Seddon. Passenger travel from Westona, Seaholme and Altona is low and
we consolidate demand in the so-called Altona loop.

The resulting network consists of 7 stations, with an observed daily demand
ranging between 15,000 and 17,000 passengers. The network is serviced by 34
trains running during the peak period: 16 Werribee Express services, and 9 trains
for each Laverton and Williamstown lines. The resulting reduced-network model
requires up to 15 seconds to be solved for most instances, with a few exceptions
requiring up to a maximum of 3 hours of execution.

6.2 Heatmaps

We re-examine the morning peak period for Thursday, February 2, 2017, now
using the optimisation model. The resulting passenger counts and congestion
levels are shown in Figure 3a assuming forward shifting is not allowed, and
Figure 3b assuming forward shifting is allowed.

Clearly the optimisation-based solution drastically reduces congestion levels.
With forward shifting, it is able to restrict congestion levels on all services to
standing. Even without forward shifting, it is able to remove all breach events
from the system.
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Dep. Time Werribee Laverton Altona Williamstown Newport Footscray
7:04 505 528 - - 662 648
7:13 171 264 261
7:16 115 264 - 662 652
7:19 510 528 - - 662 647
7:29 614 625 - - 739 662
7:35 202 662 654
7:38 329 528 - 662 648
7:39 662 662 - - 662 662
7:49 762 744 - - 759 662
7:57 215 662 649
8:00 374 528 - 798 783
8:02 542 528 - - 662 596
8:11 516 528 - - 662 651
8:19 144 528 521
8:22 220 338 - 528 520
8:24 454 528 - - 525 510
8:33 452 440 - - 528 506

(a) Forward shifting not allowed.

Dep. Time Werribee Laverton Altona Williamstown Newport Footscray
7:04 527 528 - - 528 527
7:13 171 498 494
7:16 99 250 - 662 654
7:19 450 528 - - 633 528
7:29 528 528 - - 662 655
7:35 202 662 654
7:38 260 459 - 528 514
7:39 528 528 - - 662 660
7:49 528 528 - - 636 528
7:57 215 662 649
8:00 377 528 - 528 513
8:02 577 528 - - 528 493
8:11 488 528 - - 528 515
8:19 144 662 646
8:22 226 345 - 528 520
8:24 436 528 - - 528 512
8:33 424 395 - - 528 519

(b) Forward shifting allowed.

Fig. 3: Optimised passenger counts and congestion levels during the morning
peak for all services operating on the Werribee-Williamstown-Footscray network
on February 2, 2017.

6.3 Effect of Passenger Uptake

In the next experiment we vary passenger uptake levels, thus restricting the
number of passengers that can be moved from their original service. We also
consider the five different weekdays from Monday, January 30, 2017 until Friday,
February 3, 2017.

Figure 4 shows on the left how the objective function of Equation (12) changes
for different levels of passenger uptake, for all five weekdays. We compare greedy
demand shifting versus the optimisation-based demand shifting using the objec-
tive of Equation (12), with and without forward shifting. Note that Monday has
noticeably less passengers than the other days. Clearly, greedy demand shifting
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Fig. 4: Congestion levels (left) and percentage of passengers experiencing con-
gestion at some point in their trip (right), using Equation (12).

only has a slightly beneficial effect on the network and can indeed worsen the
congestion score, because it makes myopic decisions which end up leading to
later congestion. In contrast, the optimisation-based approaches can drastically
reduce congestion. With 100% take-up, congestion is always reduced to nearly
zero when allowing forward shifting. Enabling forward shifting, while universally
improving the results, does not appear to make that much difference, at least at
the granularity visible in the plot. But the gains are substantial when considered
in relative terms (c.f. Figure 3).

Figure 4 on the right shows how many passengers experience congestion on
their trip, that is, passengers that travel at least one segment in a breached train.
Again we see the greedy demand shifting can worsen this measure, while the op-
timisation approaches can quickly find solutions where no passenger experiences
congestion.

Figure 5 shows the results measured with the more fine-grained objective
function of Equation (13). In these experiments, the optimisation approach was
run minimising this objective. On the left we see how the objective value changes
as passenger uptake increases. Interestingly, using this measure we can see that
greedy shifting is in fact reducing congestion per passenger, although not per
service, and it does improve as passenger uptake increases. The optimisation
solutions are again far superior, reducing the objective function to very low
values smoothly as the uptake increases.

Figure 5 on the right shows the percentage of passengers experiencing con-
gestion. The results for greedy shifting are unchanged. Again, the optimisation
results show a significant reduction on the proportion of passengers travelling on
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Fig. 5: Balancing objective function values (left) and percentage of passengers
experiencing congestion at some point in their trip (right), using Equation (13).

breached services. The peak for Wednesday and 40% uptake can be explained by
considering that our model is not directly minimising the percentage of passen-
gers experiencing congestion. According to the recorded trips, several services
ran well above the breach threshold on this day. Considering a small uptake (e.g.,
20%) evens out the number of passengers on these services, but keeps most trains
previously running at target on the same congestion level. At 40% uptake, the
number of shifted passengers is not enough to bring the former services below
breach, but some passengers can be re-allocated to different trains that were
operating just under the breach threshold. Passengers on these services, who
were not considered to be experiencing congestion before, are now travelling on
breached trains. However, despite the percentage increasing, passenger numbers
on board over-congested trains are lower and more balanced across services. Ta-
ble 1 summarises the results obtained with the proposed fine-grained objective
function aimed at balancing passengers between services, including the number
of breach incidents and the percentage of passengers experiencing congestion for
different levels of take-up.

6.4 Experimental Results and Discussion

If forward shifting is not allowed, the model yields results that will help alleviate
congestion, but do not completely eliminate it. We still obtain some trains where
utilisation is very close to the breach threshold. This increases the risk of over-
congestion if passenger numbers keep rising. However, this kind of intervention
is the easiest and most likely the cheapest, since it does not require a major



14 J. M. Betts et al.

Table 1: Results obtained with our optimisation model using Equation (13) for
different percentages of shifted passengers showing number of breach incidents
and percentage of passengers experiencing a breach service.

0% 20% 40% 60% 80% 100%
Breach PAX Breach PAX Breach PAX Breach PAX Breach PAX Breach PAX

Day Forward inc. (%) inc. (%) inc. (%) inc. (%) inc. (%) inc. (%)
Mon 5 11 32.62 8 22.02 0 0.00 0 0.00 0 0.00 0 0.00

3 11 32.62 8 21.45 0 0.00 0 0.00 0 0.00 0 0.00
Tue 5 13 38.21 10 28.86 7 19.79 1 6.30 0 0.00 0 0.00

3 13 38.21 9 27.84 4 13.53 0 0.00 0 0.00 0 0.00
Wed 5 13 38.13 9 23.11 10 31.75 0 0.00 0 0.00 0 0.00

3 13 38.13 9 23.32 4 13.42 0 0.00 0 0.00 0 0.00
Thu 5 13 37.29 10 27.83 7 26.11 0 0.00 0 0.00 0 0.00

3 13 37.29 10 27.42 4 13.76 0 0.00 0 0.00 0 0.00
Fri 5 14 37.16 4 16.12 4 14.40 0 0.00 0 0.00 0 0.00

3 14 37.16 4 16.36 4 14.84 0 0.00 0 0.00 0 0.00

change in passenger behaviour. Arrival and touch-on patterns remain the same,
but passengers are given recommendations to board specific alternative trains
in order to avoid an uncomfortable trip on a congested service. This could be
achieved by, e.g., providing additional on-screen information about alternative
trains and congestion levels. One example of this is the smartphone app of NS,
the Dutch national rail operator, which shows the expected congestion levels of
arriving trains, from which passengers can make an informed choice of whether
to wait for a less congested service or not. We observe the greatest reduction
in congestion is achieved when forward shifting is allowed. For this to work,
passengers might need to arrive at the station up to 10 minutes prior to their
intended trip departure for a less congested ride. This would require a change
in passenger behaviour, and might need to be implemented in conjunction with
other incentive mechanisms, such as fare reduction. However, our results show
that even a quite modest adoption of such a program (of the order of 20%) could
provide a significant reduction on congestion levels during the morning peak.

Our optimisation results also show that demand shifting up the line (closer to
where the service originates) can lead to a major reduction in congestion down
the line—that is, closer to Melbourne. The results for simulated demand shifting
show that myopic interventions lead at most to a minor alleviation of conges-
tion for some services. The implications of this research for PTV is that better
management of demand originating at Werribee, Hoppers Crossing, Williams
Landing, or Aircraft, could reduce congestion at busy stations down the line.
For example, many trains originating at Werribee currently depart Laverton
and Newport at or above target levels, so that it is almost inevitable that these
trains will become congested as they journey towards Melbourne. Results from
our optimisation model show that reducing demand for these services when al-
ternatives are available at origin could prevent congestion down the line. Our
results, thus, give some guidance on where to trial interventions to reduce con-
gestion in the morning peak.
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7 Conclusions and Future Work

Much has been written on the various ways in which to optimise rail networks,
but relatively little work that we are aware of exists on providing information
for passengers to modify their behaviour in ways that improve the system for
all users. Our pilot study shows how this might be achieved in the southwest
Melbourne rail network. As Melbourne grows, the efficient usage of all public
transport infrastructure will become more and more important, and modifying
passenger behaviour is an attractive alternative to provisioning more services.

There are several ways in which the work presented here might be extended.
The actual weights (or costs) in our objective functions from Section 5 are ad hoc.
Analysis of the relative importance ascribed to comfort over the other competing
concerns of passengers from the survey literature may, perhaps, more realistically
weight the objective function in our model. We could consider the multi-objective
problem measuring both trip time and comfort and explore the efficient (Pareto)
set of possible solutions arising from this.

Deeper analysis of customer arrival times at stations could also be valuable.
Patterns in customer arrival may arise from a mixture of behaviours—for exam-
ple, we would expect to see schedule-aware customers whose arrival time is some
function of when the next train is scheduled to depart, and schedule-oblivious
customers whose arrival time is largely independent of the timetable. This leads
to the possibility of using mixture modelling [10], possibly incorporating the
Poisson distribution [15], to more accurately model customer behaviour. Fur-
ther to such mixture modelling for different customer arrival times, re-visiting
the discussion of [17], our greedy and optimisation models could be modified to
treat customers of various behaviour types differently.
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