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Abstract - The Aircraft Recovery Problem appears when 
external events cause disruptions in a flight schedule. Thus in 
order to minimize the losses caused by the externalities, 
aircrafts must be reallocated (rescheduled) in the best possible 
way. The aim of this paper is to develop a suitable 
methodology that combines optimization techniques with a 
simulation approach to tackle the so-called Stochastic Aircraft 
Recovery Problem. The approach solves the problem through 
the rescheduling of the flight plan using delays, swaps, and 
cancellations. The main objective of the optimization model is 
to restore as much as possible the original flight schedule, 
minimizing the total delay and the number of cancelled flights. 
By applying simulation techniques, the robustness of the given 
solution is assessed. The proposed methodology is applied on a 
medium-sized scenario based on real data provided by a 
commercial airline. The obtained results show that the 
methodology described in the paper is capable of producing a 
feasible and robust solution for this problem. 

 
Constraint Programming, flight schedule, disruption, 

simulation, robustness, optimization, Aircraft Recovery Problem 

I.  INTRODUCTION 
Operational disruptions are defined as a deviation from 

originally planned operations. The airline industry is notably 
one of the most affected industries regarding operational 
disruptions. The costs associated to them have gained more 
and more importance with the increase of fuel costs and the 
punctuality policies that airlines have been forced to 
implement in order to maintain competitiveness [1]. Due to 
these and other emerging restrictions that the aeronautical 
industry is facing nowadays, the optimization of resources 
has become an important issue in the aeronautical agenda 

[2]. Furthermore, flight plans are usually made several 
months prior to the actual day of operation. As a 
consequence, changes often occur in the period from the 
development of the schedule to the day of operation. Those 
changes may include unforeseen delays due to weather 
phenomena, air traffic control delays, cascade propagation 
delays, ground operations, etc. These problems make 
evident the need of decision support tools that help decision 
makers to cope with operative problems under stressed 
situations.  

On the one hand optimization-based methods and tools 
have proved its efficiency to deal with operative problems in 
complex fields such as logistics or manufacturing problems 
but there is a discussion about the lack of flexibility when 
modelling operational problems. In most cases, the 
stochasticity inherent to systems is not included in the 
developed models, thus reducing its applicability for real 
scenarios. On the other hand, simulation approaches have 
great flexibility and allow the modeller to face the problem 
under a different scope including not only stochastic 
elements in the models but also the interactions between 
entities that generate emerging dynamics which influence 
the behaviour of the real system. Nevertheless, in most 
simulation-based cases the level of optimization achieved 
depends on the number of scenarios evaluated, which in 
general are just a small fraction of the whole available 
configurations. Thus, optimality is not ensured with the 
standalone simulation approach likewise suitability is not 
ensured with the standalone optimization approach.  

In this paper we present a methodology that aims at 
overcoming these shortcomings combining optimization 
techniques with simulation. The combination of both 
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techniques allows evaluating the robustness of the solutions 
provided by the optimization method under real conditions.  

In order to minimize the consequences of the delays, the 
main objective is to restore the flight schedule as much as 
possible using the existing aircrafts, i.e. minimize the 
number of cancellations and the total delay. Given an 
original flight schedule and one or more disruptions (i.e. 
flight delays), the optimization approach generates a 
solution through delaying or cancelling flights, and 
swapping aircrafts to flights allocations, in order to create a 
feasible flight plan that minimizes the impact of the delays 
as much as possible. Such plan considers all flights 
scheduled within a certain period of time by a given fleet 
including the original departure, the expected flight 
durations, and the connections between airports. This 
challenging problem is known as the Aircraft Recovery 
Problem (ARP) and regarded to be NP-Hard [3]. 
Introducing variability in the values associated to the 
problem, i.e. flights duration or delays, the Stochastic 
Aircraft Recovery Problem (SARP) arises. In order to 
evaluate the robustness of the solution provided by the 
optimization method the stochasticity of the problem is 
simulated making variations of the original scenario 
according to the identified variations. Recent studies analyse 
the robustness of the final re-schedule [4], in contrast with 
previous airlines’ priorities of just minimizing total delays. 
The principal argument is that in networks with a large 
number of connecting flights, delays can propagate very 
rapidly throughout the scenario. This increases the recovery 
costs of the airlines and has a larger impact on their profit. 

We applied the presented methodology to a problem 
based on real data provided by a commercial airline. The 
obtained results are encouraging, being able to demonstrate 
the robustness of solutions obtained by means of the 
developed optimization method. The robustness of the 
methodology is proved by finding the optimal solution for 
most of the tested scenarios even when the stochasticity 
values are introduced.  

The remainder of the article is organized as follows. In 
subsection A the state of the art of the problem is presented. 
The proposed approach is further discussed in section II. 
The results are presented in section III leading to interesting 
conclusions that we outline in the final section. 

A. Literature Survey  
 

Teodorvic and Gubernic [5] are the pioneers of the ARP. 
Given that one or more aircraft are unavailable, their 
objective is to minimize the total passenger delay by flight 
re-timing and aircraft swaps. The algorithm is based on a 
branch-and-bound framework where the relaxation is a 
network flow with side constraints. 

The literature contains several works on different aspects 
of the ARP. Many of them are based on a multi-commodity 
flow problem solved on a time-band network, Jarrah et al. 
[6] use a network flow model for cancelations and re-

timings. Yan and Yang [7]� work is based on network 
models, which are formulated as pure network flow 
problems or network flow problems with side constraints. 
Yan and Young [8]�formulated several strategic models as 
multiple commodity network flow problems. Argüello et al. 
[9] and Bard et al. [10] use a time-band model to solve the 
ARP. Yan and Lin [11] and Yan and Tu [12] use a time-line 
network in which flights are represented by edges. 
Thengvall et al. [13] present a model in which deviations 
from the original schedule are penalized in the objective 
function. Again, Thengvall et al. [14] introduce a multi-
commodity flow model based on a time-band network to 
solve the ARP after a hub closure. Bard et al.  [10] present 
an heuristic based on an integral minimum cost flow in the 
time-band network.  

A most recent work by Dunbar et al. [5] is focused on the 
robustness of the solution by integrating aircraft routing and 
crew pairing. Lan et al. [15] develop a robust aircraft 
routing model to minimize the expected propagated delay 
along aircraft routes. They use an approximate delay 
distribution to model the delay propagation and use a 
branch-and-bound technique to solve their MIP. Instead of 
estimating delay propagation, Wu [16] used a simulation 
model to calculate random ground operational delays and 
airborne delays in an airline network. Wu [16][17] shows 
that delays are inherent in airline operations due to 
stochastic delay causes. 
 

II. PROPOSED APPROACH 

A. Optimization method 
 

The optimization method is based on the Constraint 
Programming (CP) paradigm. CP is a modelling and solving 
paradigm that uses constraints to describe the relations 
between the different problem variables. It differs from 
programming languages, as it is not necessary to specify a 
sequence of steps to generate the solution, but rather the 
properties. The main applications areas to date are 
scheduling, routing, planning and resource configuration 
among others [18]. In CP, different methods may be applied 
to solve problems in order to find a feasible solution 
satisfying all the constraints. This class of problems are 
known as Constraint Satisfaction Problems (CSP), and the 
main mechanism for solving them is constraint propagation 
[19]. Constraint propagation works by reducing variables’ 
domains removing unfeasible values, strengthening 
constraints, or creating new ones. This leads to a reduction 
of the search space, guiding the search quicker towards 
feasible regions. Basically, constraint propagation generates 
the consequences of a decision. There are strategies to 
increase the efficiency of the technique; one of them is the 
addition of redundant constraints to further prune the search 
tree. We take advantage of this characteristic in our 
formulation of the ARP, thus modelling the problem with 
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two sets of variables: predecessors and successors. This 
formulation is inspired on the Vehicle Routing Problem 
formulation by Kilby and Shaw [20]. These variables allow 
us modelling the same search space from two different 
perspectives, while the redundant constraints propagate 
decisions made in any of the two sets to the other one. 
Following this strategy, the search space is explored more 
efficiently. We use an exact branch-and-bound algorithm 
[21] to solve the problem, so we can guarantee optimality 
for the solutions. Although in general regarded as a slow 
method, it perfectly fulfils our purposes according to the 
real instances at hand. 

The ARP model provides solutions through reallocations 
of aircrafts performing swaps (Figure 1), delays (Figure 2), 
and cancellations. The goal is to minimize the total delay 
and the number of cancelled flights, while restoring as much 
as possible the original flight schedule. The use of CP 
introduces flexibility to our approach, aiming at extending 
the model to more complex scenarios in the future. 
Although this methodology has the presented advantages, it 
also has some limitations as only permits tackling 
deterministic scenarios.  For this reason, we combine it with 
simulation techniques in order to cope with stochastic 
scenarios. 
 

 
Figure 1. Swapping Movement.

 
Figure 2.  Delay Application. 

 

B. Simulation approach 
 

When the ARP is extended with stochasticity, the 
resulting problem becomes more challenging. This problem 

is the so-called Stochastic Aircraft Recovery Problem 
(SARP). There are some variations of the SARP due mainly 
to the nature and origin of the variations. The case studied in 
this work provides solutions for variations that appear in 
flight time and turnaround times caused by local 
disruptions. 

When the stochastic times are included in the original 
ARP, it becomes necessary to develop an approach that 
takes into account this variability. In general, an optimal 
solution for a deterministic problem may not be optimal, or 
even feasible, for the stochastic case. For this reason, we 
combine optimization and simulation techniques in order to 
develop a suitable methodology for the SARP. In this 
approach, we use simulation to assess the robustness of the 
solutions obtained by means of the optimization method. 
Hence, the developed methodology is able to deal with real 
scenarios, where stochasticity is inherent to the system.  

The proposed methodology, illustrated in Figure 3, is 
structured in the following steps: 
 

1) The stochastic problem is simplified to a 
deterministic instance by using the average values 
of the adjusted probability distributions of the 
different processes.  

Deterministic 
problem

Initial solution 
(initial delay)

CP Model 
(optimization)

Original 
schedule

Revised 
schedule 

(optimal delay)

Simulated 
solutions 

(simulated delays)

Upper Bound

20 x

Probabilistic 
distributions 
(simulation)

Is the revised schedule 
robust enough?

END

START

Return revised 
schedule

Lower Bound

NO

YES

Figure 3.  Flow diagram of the proposed methodology. 
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2) As the original flight schedule is known, we 
compute the total delay (the objective function) 
associated to this solution. This provides an initial 
value for the total delay, which is used as an upper 
bound for the objective function in the local search 
process performed by the CP optimization method.  

3) The CP model is then used as a local search 
process to improve the initial solution allowing 
flights to be delayed, swapped, and cancelled if 
necessary. An improved flight schedule reducing 
the total delay is found as the result of this step. 

4) The optimized solution is then checked using 
simulation to verify its robustness: a set of 20 
stochastic instances is generated using the 
probability distributions for the processes. 
Maintaining the improved flight schedule returned 
by the CP model, we compute the total delay for 
each instance. This way, a single solution is 
evaluated in 20 different scenarios. The results are 
analysed in order to determine the level of 
robustness of the obtained solution. At this stage, 
different criteria can be considered to determine 
whether a solution is robust or not. First, a solution 
may be considered to be robust if the standard 
deviation of the simulated solutions is proportional 
to the variation of the used probabilistic 
distributions and its expected propagation due to 
problem’s size. Second, a solution may be 
considered robust if the gap between the average of 
the simulated solutions and the deterministic 
solution falls within a tolerance interval. Third, we 
may define the criterion as the number of solutions 
whose gap to the deterministic solution is smaller 
than a given value. Finally, operational 
considerations such as the number of swapped 
flights / aircraft allocations may be introduced. In 
the practical case presented in this work, we use 
the first criterion to determine the robustness of the 
obtained solutions.  
 

If the solution is not robust, its objective function value 
is used as a lower bound and the optimization/simulation 
process is repeated. Using this strategy a worst solution may 
be found but with a better robustness. Otherwise, the 
solution is accepted and the algorithm ends. Thus, the 
methodology returns either the optimal deterministic 
solution, if it is robust enough, or a quasi-optimal one whose 
properties are more suitable for the stochastic problem at 
hand.  
 

III. APPLICATION 

The tests were conducted in a standard personal computer 
with an Intel Core i5 processor at 2.5 GHz and 4Gb RAM. 
For the optimization process, we used the CP platform 

ECLiPSe 6.0 [22]. In order to generate the different 
stochastic scenarios, an Excel sheet was used.  

Aiming to test the presented methodology, we used real 
data to define a SARP instance. The flights information was 
provided by a Spanish airline through a confidentiality 
agreement. We shall refer to this airline, when applicable, as 
“the airline”. The airline has a main hub at Madrid’s airport 
and secondary hubs in Barcelona and Palma de Mallorca. 
This fact is observed in their flights distribution summarised 
in Table I. Madrid (MAD) hosts 15 flights, while Barcelona 
(BCN) and Palma de Mallorca (PMI) host 8 and 5 flights, 
respectively. 

A total of 51 flights have been used, with 13 airports and 
11 aircrafts. This scenario has a flights/planes ratio of 4.63, 
compared to a ratio of 4.3 for Thengvall et al. [14], and 7.2 
for the biggest ratio of an instance reported in the survey of 
Clausen et al. [23]. Due to the size of the graph, it is not 
possible to show all the connections between airports and 
the aircraft to flight allocation. 

 

TABLE I.  LIST OF FLIGHTS AND AIRPORTS 

 
Airport # Flights 

ACE 2 

AGP 5 

AMS 2 

BCN 8 

BIO 1 

CDG 3 

FCO 3 

LGW 2 

MAD 15 

MXP 1 

ORY 1 

PMI 5 

TFN 3 

Total 51 

 
In order to simulate a local disruption, we introduce a 

delay of 120 minutes to the first 5 flights departing from 
Madrid airport. In addition, some stochasticity is added to 
the duration of each flight. We simulate this fact by 
considering a normal probability distribution whose mean 
value is the estimated flight duration. The standard deviation 
is set to be 5 % of the flight duration. A 5% is chosen as no 
distribution can be adjusted due to the lack of samples. By 
using this deviation, we introduce some reasonable variation 
to our system. This permits validating the obtained results 
and the robustness of our solutions. According to this 
variation and the size of the considered scenario, we 
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consider a solution to be robust if the standard deviation 
obtained from the simulated scenarios is less or equal to 
15%.  

Table II and Table III summarize the results obtained for 
both the deterministic and stochastic scenarios, respectively. 
Since the first solution obtained accomplishes the defined 
robustness criterion, only the results for this solution are 
reported.  

 

TABLE II.  RESULTS FOR THE DETERMINISTIC SCENARIO 

 Original flight 
schedule (min) 

Improved flight 
schedule (min) Gap (%) 

Total delay 718 688 - 4.18 
 
 
As mentioned before, for the deterministic case we take 

the mean values of the normal distributions. The total delay 
is calculated as the sum of all delays present throughout the 
system. As can be observed in Table II, applying the 
optimization process allows obtaining a revised flight 
schedule for the new scenario, reducing the total delay in 
4.18 %. 
 

Table III shows the results for the 20 generated 
stochastic instances. For each case, the corresponding 
optimal solution is reported, as well as the results for the 
original and revised flight schedules. The optimal solution is 
computed for each scenario by means of the CP model. As it 
uses exact methods, the obtained solutions are guaranteed to 
be optimal. This value is provided for comparative 
purposes. For each flight schedule, the total delay and the 
gap regarding the optimal solution are presented. The total 
delay is calculated by keeping the same flight allocation as 
in the deterministic case. Therefore, the variations in 
solutions’ value are given by the deviations in the input data 
for each scenario, i.e. the variations in the flights duration. 

As it may be observed in the values presented in Table 
III, the improved flight schedule presents a more robust 
behavior than the original one. This can be inferred from the 
lower gaps regarding the optimal solution. Although the 
standard deviations of the objective function values are 
similar, the revised plan is able to match the optimal 
solution in 14 cases out of 20. On the other hand, the 
original flight schedule only matches the optimal solution in 
3 scenarios. In these three cases, both the original and the 
revised flight schedules yield the same total delay.  

It is also important to notice that the improved flight 
schedule provides a better solution in all scenarios but one. 
Thus, the adopted simulation approach assesses the solution 
obtained by means of the local search process as a good and 
robust alternative. 
 
 
 
 

TABLE III.  RESULTS FOR THE STOCHASTIC SCENARIOS 

Scenario 
Optimal 
solution 

(min) 

Original flight 
schedule 

Improved flight 
schedule 

Total 
delay 
(min) 

Gap 
(%) 

Total 
delay 
(min) 

Gap 
(%) 

1 761 815 7.1 761 0.0 

2 789 874 10.8 789 0.0 

3 787 837 6.4 787 0.0 

4 711 746 4.9 711 0.0 

5 835 835 0.0 835 0.0 

6 767 791 3.1 767 0.0 

7 916 1015 10.8 944 3.1 

8 794 847 6.7 802 1.0 

9 710 741 4.4 710 0.0 

10 809 843 4.2 809 0.0 

11 777 803 3.4 803 3.4 

12 785 927 18.1 785 0.0 

13 701 714 1.9 701 0.0 

14 986 1046 6.1 1064 7.9 

15 640 691 8.0 661 3.3 

16 720 737 2.4 720 0.0 

17 934 934 0.0 934 0.0 

18 769 823 7.0 769 0.0 

19 804 902 12.2 854 6.2 

20 769 769 0.0 769 0.0 

Average 788.2 834.5 5.9 798.8 1.2 

St. Dev. 10.4 % 11.8 %  11.4 %  

 

IV. CONCLUSIONS 
In this paper we present a combined methodology using 

simulation and optimization techniques to cope with the 
Stochastic Aircraft Recovery Problem. The uncertainty 
associated with this problem turns it into a good candidate 
for combining both disciplines. Furthermore, in real 
scenarios the simulation component gains weight, but at the 
same time better and more robust solutions are needed.  

We combine simulation and optimization in a very 
straightforward way. First, we use a CP-based local search 
process to get the optimal solution of a simplified version of 
the problem. Next, we simulate different variants of the 
tackled instance in order to assess the quality of this 
solution. Thus, the inherent stochasticity of the problem is 
naturally introduced in the decision making process. If the 
so-obtained solution does not achieve some imposed 
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robustness criteria, it is discarded and a new improved 
solution is generated. 

The main contribution of the paper is the methodology 
combining simulation and optimization approaches where 
results are easily propagated between both techniques. The 
solutions obtained from the optimization method are easily 
perturbed and tested in the simulation scenarios. On the 
other hand, the information retrieved from the simulation 
variants may be used to add new restrictions to the 
optimization model. 

Real scenarios involving unpredictable disruptions need a 
more robust solution that can absorb changes in a solid way. 
As shown in the results, our methodology is able to find a 
robust solution, which in most experiments matches the 
optimal solution. Bigger instances up to 150 flights are 
currently being tested to further assess the methodology 
presented. 

Finally, being an active field for research, the 
methodology may be extended to tackle more complex 
variants of the problem. For instance, a joint problem 
combining ARP characteristics with flight crews’ 
scheduling is under consideration. 
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