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Abstract

The two-dimensional vehicle routing problem (2L-VRP) is a realistic exten-
sion of the classical vehicle routing problem in which customers’ demands are
composed by sets of non-stackable items. Examples can be found in real-life
applications such as the transportation of furniture or industrial machinery.
Often, it is necessary to consider stochastic travel times due to traffic condi-
tions or customers availability. However, there is a lack of works discussing
stochastic versions of the 2L-VRP. This paper offers a model of the 2L-VRP
with stochastic travel times that also includes penalty costs generated by
overtime. To solve this stochastic and non-smooth version of the 2L-VRP,
a hybrid simheuristic algorithm is proposed. Our approach combines Monte
Carlo simulation, an iterated local search framework, and biased-randomised
routing and packing heuristics. Our algorithm is tested on an extensive
benchmark, which extends the deterministic one for the 2L-VRP with unre-
stricted and non-oriented loading.
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1. Introduction

The vehicle routing problem (VRP) is a well-known combinatorial opti-
misation problem in which a fleet of vehicles has to service a set of customers
at the lowest possible cost (Golden et al., 2008; Toth and Vigo, 2014). The
most basic variant of the VRP is the capacitated vehicle routing problem
(CVRP), where a homogeneous fleet of vehicles with restricted capacity,
based at a central depot, needs to satisfy customers demands by visiting
them only once. Additional restrictions, such as distance or time-based con-
straints, are often considered in richer variants of the problem. Many VRP
variants have been extensively studied due to their challenging NP-hard na-
ture and their potential applicability on real-life transportation activities
(Caceres-Cruz et al., 2014; Lahyani et al., 2015). In this work, we consider
a realistic variant of the CVRP that combines vehicle routing and loading
(packing) constraints, known as two-dimensional VRP (2L-VRP) (Iori et al.,
2007). In a 2L-VRP, customers demands consist of a set of rectangular items
that cannot be stacked due, for instance, to their weight or fragility. Figure 1
shows an example of a 2L-VRP with three routes and their corresponding
packing plans. Our work was originally motivated by operations at Opein
Inc. (www.opein.com), a medium-size company in Spain that hires indus-
trial equipment to its customers, mostly in the construction field. Opein has
to periodically deliver and pick up a variety of industrial machinery (e.g.,
aerial-work platforms, energy-generation sets, dumpers, forklifts, or profes-
sional cleaning equipment). Similar issues are also present in other trans-
portation activities, where large-size items – such as furniture or appliances
– are required to be picked up or delivered. These items must be efficiently
accommodated in the truck to ensure a high utilisation of the vehicle. This
packing process may also critically affect routing decisions. Hence, one needs
to consider not only the items weight, but also their dimensions. In the
2L-VRP, items are normally considered to be of rectangular shape and they
cannot be piled up or overlap on the truck’s loading surface.

Four main variants have been defined for the 2L-VRP, depending on dif-
ferent configurations of the loading constraints. These constraints may refer
to the order items are loaded on the vehicle (unrestricted or sequentially)
or the orientation of each item (allowing, or not, items rotation). The dif-
ferent combinations of these constraints yield the four 2L-VRP variants: (i)
unrestricted oriented loading (2|UO|L), allowing items to be rearranged dur-
ing the distribution process but not rotated; (ii) unrestricted non-oriented
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Figure 1: Example of a set of routes with their corresponding packing plans.

(rotated) loading (2|UR|L), where items can be rearranged and rotated to
better fit on the loading surface; (iii) sequential oriented loading (2|SO|L),
restricting items to be loaded without rotation in reverse order to customer
visits; and (iv) sequential non-oriented (rotated) loading (2|SR|L), allowing
items to be rotated, but ensuring they are loaded in reverse order to the visits
in the route. In this work, we tackle the unrestricted non-oriented version
of the problem (2|UR|L), although the methodology proposed here can be
extended to cope with other variants and extensions of the 2L-VRP. Allowing
items rotation is not only a realistic assumption, but it also may yield more
efficient packing plans (Dominguez et al., 2014b).

One of the main reported issues in real operations is the significant vari-
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ability on the time required to perform all the assigned activities. Although
routes may be planned carefully, travel times between customers depend
on traffic and access conditions to the site, causing the actual time to vary
substantially with respect to the original estimate. Likewise, customers avail-
ability may also delay the start of the service, forcing the vehicle to wait at
the site upon arrival. Since all these potential sources of delay occur be-
tween the end of the previous service and the start of the next one, they
are generally aggregated as deviations from the planned travel time. These
deviations from the original plan translate into an increase of operational
costs. Often, drivers need to be paid overtime due to an excess of driving
hours beyond the duration of their shift. Furthermore, the company may
incur into additional costs related to extending their operation time, like pa-
perwork needs to be finished after the completion of all routes. Deterministic
solving approaches for the 2L-VRP fail to capture such real-life uncertainty.
Accordingly, the main contributions of this paper are: (i) the introduction
of a more realistic version of the 2L-VRP that considers stochastic travel
times (2L-SVRP) and penalty costs due to overtime; (ii) the proposal of a
formal model to describe the 2L-SVRP in an accurate way, including the use
of penalty-cost functions to account for overtime; (iii) the development of
a simheuristic algorithm (Juan et al., 2015), integrating simulation within a
metaheuristic framework, to minimise the expected total cost that includes
both travel-times cost and overtime cost; and (iv) the generation of a new set
of stochastic instances for the 2L-SVRP by extending, in a natural way, the
classical sets for the 2L-VRP. Our simheuristic approach relies on an iterated
local search (ILS) framework (Lourenço et al., 2010; Grasas et al., 2016a),
where we embed biased-randomised versions of classical routing and packing
heuristics. Biased randomisation of heuristics refers to the use of skewed
probability distributions to induce an oriented (biased) random behaviour
of the heuristic, transforming a deterministic method into a probabilistic al-
gorithm (Juan et al., 2013a; Grasas et al., 2017). In particular, we use a
biased-randomised version of the classical Clarke and Wright savings heuris-
tic for the CVRP (Clarke and Wright, 1964), enhanced with memory-based
techniques (Juan et al., 2010). To compute packing plans, we use a biased-
randomised version of the Best-Fit heuristic (Burke et al., 2004). Monte
Carlo simulation (MCS) is integrated at two stages of the search process in
order to: (i) assess the performance of the obtained solutions; and (ii) to pro-
vide guidance to the metaheuristic component during the solution-searching
process. Our method is able to obtain solutions that clearly outperform the
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ones obtained for the deterministic version of the problem when these are
applied in a stochastic environment. In other words, near-optimal solutions
for the deterministic 2L-VRP might easily become sub-optimal solutions for
the 2L-SVRP, which justifies the need of simulation-based methods as the
one introduced here. Additionally, our simheuristic approach could easily
be adapted so that, instead of searching for the solution with the minimum
expected cost, it searches for the solution that maximises the probability of
not exceeding a specific cost threshold. Notice that the use of more tradi-
tional methods, such as stochastic programming, would derive in prohibitive
computing times when solving medium- and large-size instances of the 2L-
SVRP, specially considering that the introduction of penalty costs makes the
objective function to become non-smooth.

The remaining of this paper is structured as follows. We provide an
overview on related work in Section 2 and formalise the 2L-SVRP problem
in Section 3. Details of our proposed approach are described in Section 4.
Our simheuristic algorithm is assessed on a set of numerical experiments,
explained and discussed in Section 5. Finally, Section 6 summarises the
main contributions and results of this work.

2. Literature Review

To the best of our knowledge, no other authors have published analysis on
the 2L-SVRP. For that reason, we have distributed the literature review in
three parts. First, a review on existing works on the deterministic 2L-VRP is
provided. Then, we discuss existing work on stochastic variants of the VRP.
Finally, a review is given on works using simheuristic approaches for solving
stochastic optimisation problems.

2.1. The Deterministic 2L-VRP.

The deterministic version of the 2L-VRP is a relatively recent variant of
the VRP, originally introduced by Iori et al. (2007). It is another example of
a research trend aimed at including more real-life constraints into classical
VRP variants (Caceres-Cruz et al., 2014; Lahyani et al., 2015). Specific
surveys on the combination of routing and loading constraints can be found
in Wang et al. (2009) and Iori and Martello (2010).

In the original work by Iori et al. (2007), the authors propose an exact
branch-and-cut algorithm to solve the routing aspects, and a branch-and-
bound algorithm combined with heuristics and effective lower bounds to deal
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with the packing requirements. From the different loading configurations,
the authors only tackle the sequential oriented case.

Although the approach by Iori et al. (2007) is able to find optimal solu-
tions for instances up to 35 customers and 100 items, there are smaller in-
stances where optimality has not been guaranteed (Iori and Martello, 2010).
Since these limits are not reasonable for practical applications, several ap-
proaches based on heuristics and metaheuristics have been proposed in the
literature. Different authors have developed approaches based on tabu search
(TS) algorithms. Thus, Gendreau et al. (2008) propose a TS approach de-
signed to solve both the sequential and the unrestricted oriented loading
configurations. Zachariadis et al. (2009) use a hybrid algorithm combining
TS, guided local search, and five packing heuristics with different selection
criteria to develop feasible loading configurations. Leung et al. (2011) com-
bine TS with a new heuristic for solving the loading configuration. The same
authors had previously presented a simulated annealing (SA) approach to
tackle the oriented versions of the problem (Leung et al., 2010). Duhamel
et al. (2009) propose a hybrid approach combining GRASP (Greedy Ran-
domised Adaptive Search Procedure) with evolutionary local search. In their
approach, the loading constraint is handled by a resource constraint project
scheduling problem heuristic especially tuned to address the bin packing part
of the problem. The same authors later embedded their approach into an
optimisation framework whose last step was transforming the obtained re-
laxed solutions into 2L-VRP solutions by solving a dedicated packing prob-
lem (Duhamel et al., 2011). Zachariadis et al. (2013) present an approach
named Promise Routing-Memory Packing (PRMP), which combines local
search with an effective diversification based on regional aspiration criteria.
The loading feasibility of routes is tackled by a packing heuristic enhanced
by an innovative memory mechanism. The same authors have extended their
approach to tackle the 2L-VRP with unrestricted oriented and non-oriented
loading, as well as a new variant of the problem with simultaneous pick-ups
and deliveries (Zachariadis et al., 2016, 2017). Finally, Wei et al. (2015) in-
troduced a variable neighbourhood search (VNS) algorithm to tackle both
sequential and unrestricted oriented loading variants of the 2L-VRP. The au-
thors combine a skyline heuristic with memory-based mechanisms to examine
loading constraints. More recently, Wei et al. (2018a) also combined an open
space-based heuristic and efficient data structures within a SA framework to
face the unrestricted and sequential variants of the problem, both with and
without items rotation.
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The oriented versions of the problem have received far more attention
in the 2L-VRP literature than the non-oriented variants. Fuellerer et al.
(2009) were the first authors to address the four problem variants, using
an ant colony approach. In fact, only Fuellerer et al. (2009), Dominguez
et al. (2014b; 2016a), Zachariadis et al. (2016; 2017), and Wei et al. (2018a)
have addressed the non-oriented loading configurations. Dominguez et al.
(2014b) propose a multi-start biased-randomised algorithm to analyse both
unrestricted oriented and non-oriented loading variants. At each restart,
a biased randomisation of a savings-based heuristic is combined with an
enhanced version of a classical packing heuristic to produce feasible good
solutions. A similar approach was used later to solve the sequential oriented
and non-oriented variants of the problem, as well as a 2L-VRP extension
with backhauling (Dominguez et al., 2016a). A limited number of problem
extensions have also been addressed in the literature, both with oriented and
non-oriented loading configurations, including variants with heterogeneous
fleet (Dominguez et al., 2014a, 2016b), backhauls (Dominguez et al., 2016a;
Zachariadis et al., 2017), or simultaneous pick-ups and deliveries (Zachariadis
et al., 2016, 2017).

2.2. Stochastic Variants of the VRP.

None of the aforementioned 2L-VRP extensions considers the time vari-
ability associated with real-life operations. However, VRP variants consid-
ering stochastic travel times have been previously studied in the literature,
although to a limited extent. Most approaches focus on uncapacitated ver-
sions of the problem, therefore effectively addressing a variant of the multi-
ple travelling salesman problem (mTSP). Laporte et al. (1992) studied this
problem including a penalty for excess time incurred in a route. The authors
formulated three mathematical models and used a branch-and-cut approach
capable of solving to optimality small instances. Lambert et al. (1993) pre-
sented an extension of this work considering hard deadlines and developed a
savings-based heuristic procedure to solve this variant. These authors used
this approach to solve instances derived from real scenarios of the branch
network of a Belgian bank. Kenyon and Morton (2003) also address the
mTSP with stochastic travel times and consider two models with different
objectives: minimising the expected completion time of all routes, and max-
imising the probability that operations are completed before a defined target
time. They use a branch-and-cut approach combined with MCS to solve in-
stances of modest size. To the best of our knowledge, Rostami et al. (2017)
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were the first authors to address the CVRP with stochastic and correlated
travel times. They used a mean-variance approach to solve instances of up to
75 customers. Only a previous work by Lecluyse et al. (2009) had addressed
a related CVRP with time-dependent travel times using a TS approach.
Other VRP variants considering time windows and stochastic service times
have also been studied in the literature (Zhang et al., 2013; Errico et al.,
2016a). This variant is often used to represent stochastic demands in ver-
sions of the VRP present in service industries (e.g., technicians, healthcare,
etc.). We refer the reader interested on this problem variant to the survey
by Errico et al. (2016b).

2.3. Applications of the Simheuristics Methodology.

As far as we know, only a preliminary work by Guimarans et al. (2016)
tackles a stochastic variant of the 2L-VRP. These authors present an ap-
proach based on a multi-start strategy, although providing exploratory re-
sults. Our simheuristic algorithm significantly extends their previous work
by introducing a more complete and efficient ILS-based solving methodology,
as well as a more extensive set of numerical results.

Simheuristics have proved to be an efficient approach to solve stochastic
problems (Juan et al., 2015). They combine metaheuristic methods with sim-
ulation to guide the algorithm towards solutions that may behave better in
variable environments (e.g., less sensitive to plan deviations or better perfor-
mance in worst-case scenarios). The extension of traditional metaheuristics
into simheuristics is gaining popularity (Grasas et al., 2016b), and they have
been applied already to solve stochastic optimisation problems in fields such
as road transportation (Juan et al., 2011b, 2013b; Gonzalez-Martin et al.,
2018), waste collection (Gruler et al., 2017a,b), aviation (Guimarans et al.,
2015), inventory routing (Juan et al., 2014b; Gruler et al., 2018a,b), schedul-
ing (Juan et al., 2014a; Gonzalez-Neira et al., 2017; Hatami et al., 2018),
facility location (de Armas et al., 2016), or finance (Panadero et al., 2018).

3. Problem Definition

In the 2L-SVRP, a complete undirected graph G = (V,E) is given, where
V = {0, 1, 2, . . . , n} is the set of nodes representing the depot (node 0) and
the n customers (V0), while E = {(i, j) | i, j ∈ V ; i 6= j} is the set of edges
connecting these locations. The edges set E = {(i, j) | i, j ∈ V ; i 6= j} con-
nects customers with each other and with the depot. In the best case scenario
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(i.e., with no traffic jams, etc.), traversing edge (i, j) takes a minimum travel
time tij = tji > 0. However, under uncertainty conditions, the travel time
necessary to traverse the edge becomes a random variable Tij = tij + Dij,
where Dij = Dji ≥ 0 is a random delay that follows a known non-negative
probability distribution (e.g., Log-Normal, Weibull, etc.). Transportation of
goods is performed by a fleet of K > 1 identical vehicles, initially located at
the depot, each with maximum weight-loading capacity Q > 0 and a load-
ing area A = W × H. For each customer i ∈ V0, there are mi > 0 items
with a total weight qi > 0 to be delivered. It is assumed that the depot has
no demand, i.e., m0 = 0. For each customer’s item, its length and width
dimensions are denoted by hil > 0 and wil > 0 (1 ≤ l ≤ mi), respectively.
Thus, the total area covered by the items of customer i can be denoted as
ai =

∑mi

l=1wilhil. The variable zijk ∈ {0, 1} is used for routing decisions, such
that an edge (i, j) is part of the solution if, and only if, zijk takes the value
1 for vehicle k ∈ K, while it takes the value 0 otherwise.

The resolution of the 2L-SVRP consists in finding a set of routes that
minimise the expected time-based cost, such that: (i) every route starts and
ends at the depot; (ii) each customer is visited exactly once (therefore, all
its demanded items should fit into a single vehicle); and, (iii) in each route,
customers items do not exceed vehicles capacity and loading surface.

The routing aspects of the problem can be formulated as follows:

minE

∑
k∈K

∑
i,j∈V
i 6=j

Tijzijk

 =
∑
k∈K

∑
i,j∈V
i6=j

E [Tij] zijk (1)

subject to: ∑
j∈V0

z0jk =
∑
i∈V0

zi0k ∀k ∈ K (2)

∑
k∈K

∑
i∈V

zijk = 1 ∀j ∈ V0 (3)

∑
i∈V

ziuk =
∑
j∈V

zujk ∀u ∈ V0,∀k ∈ K (4)

∑
k∈K

∑
j∈V0

z0jk ≤ K (5)

9



∑
i,j∈V
i 6=j

qizijk ≤ Q ∀k ∈ K (6)

∑
i,j∈V
i6=j

aizijk ≤ A ∀k ∈ K (7)

zijk ∈ {0, 1} ∀i, j ∈ V, i 6= j,∀k ∈ K (8)

The objective function (1) minimises the expected cost (travel time in
this case) required to service all customers. Constraint (2) ensures that the
number of vehicles leaving the depot is the same as the number of vehicles
returning to it. Equations (3) and (4) enforce that each customer is visited
exactly once and that if a vehicle visits a customer, it must also depart from
it. Constraint (5) ensures that the maximum number of vehicles is never
exceeded. Finally, Equations (6) and (7) impose that the maximum capacity
and loading area of the vehicle are respected, respectively.

In addition, we need to take into account packing feasibility in every route.
In order to regard a packing configuration as feasible, all items must be loaded
without overlapping and with the edges parallel to the edges of the vehicle
(orthogonal loading). In the 2|UR|L case, items may be rotated when loaded
into the vehicle. Hence, we start by defining the loading surface of a vehicle
as a W × H matrix with indexes x ∈ {1, 2, . . . ,W} and y ∈ {1, 2, . . . , H}.
Hence, the position of the bottom-left corner of item l from customer i, loaded
on vehicle k, is denoted by coordinates (xilk, yilk). We also define a route R
as a subset of customers forming a route or partial route (R ⊆ V0). Finally,
we define the variable Ωil to indicate if item l of customer i has been rotated
(Ωil = 1) or not (Ωil = 0). Using this notation, we can define the packing
constraints as follows:

0 ≤ xil ≤ (W − wil)(1− Ωil) + (W − hil)Ωil ∧
0 ≤ yil ≤ (H − hil)(1− Ωil) + (H − wil)Ωil

∀i ∈ R, ∀l ∈ {1, 2, . . . ,mi} (9)
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xil + wil(1− Ωil) + hilΩil ≤ xjl′ ∨
xjl′ + wjl′(1− Ωjl′) + hjl′Ωjl′ ≤ xil ∨
yil + hil(1− Ωil) + wilΩil ≤ yjl′ ∨
yjl′ + hjl′(1− Ωjl′) + wjl′Ωjl′ ≤ yil

∀i, j ∈ R, ∀l ∈ {1, 2, . . . ,mi},∀l′ ∈ {1, 2, . . . ,mj}, (i, l) 6= (j, l′) (10)

Constraint (9) ensures that items are loaded within the vehicle’s loading
surface, while expression (10) permits avoiding any two items overlapping on
the surface of the vehicle.

As mentioned in Section 1, companies such as Opein Inc. often have to
deal with additional costs due to overtime and associated expenses. This
problem is generally aggravated by unforeseen deviations from planned oper-
ations, normally due to longer-than-expected travel or service times. In order
to adjust the 2L-SVRP formulation to these situations, we have modified the
objective function (1) to account for incurred further expenses. Thus, when-
ever the travel time employed by one vehicle exceeds a user-given threshold
(e.g., 8 hours in some real-life cases), a penalty cost is added to the objective
function. Hence, the new objective function can be expressed as (11):

minE

[∑
k∈K

fk

]
(11)

with:

fk =


∑

i,j∈V
i6=j

Tijzijk , if
∑

i,j∈V
i 6=j

Tijzijk ≤ τ∑
i,j∈V
i 6=j

Tijzijk + ρ(
∑

i,j∈V
i 6=j

Tijzijk − τ) + γ , otherwise
(12)

where ρ > 0 and γ ≥ 0 are user-given parameters associated with a penalty
cost component due to the existence of overtime in completing route k. No-
tice that we are assuming that this penalty cost can be expressed in time
units (or, equivalently, that the travel time cost can be expressed in mone-
tary units).
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4. Our Simheuristic Solving Approach

We propose a simheuristic approach for minimising the expected (time-
based) total cost in the 2L-SVRP. Our methodology combines an ILS meta-
heuristic with simulation techniques to deal with the stochastic nature of the
problem. As discussed in Grasas et al. (2016a), ILS offers a well-balanced
combination of efficiency and relative simplicity, and can be easily extended
to a simheuristic.

Algorithm 1 depicts the main characteristics of our approach, composed
of three stages. First, a feasible initial solution is generated using a construc-
tive heuristic. Then, during the second stage, the ILS metaheuristic improves
this initial solution by iteratively exploring the search space and conducting
a short number of MCS runs. This procedure is based on perturbing the
current solution to obtain a new starting point, and subsequently exploring
the neighbourhood of this new solution. The short MCS runs are used to ob-
tain rough estimates of the solution’s behaviour under stochastic conditions,
which allows to generate a pool of ‘promising’ elite solutions. In the third
stage, a refinement procedure using a larger number of MCS runs is applied
to these elite solutions, which allows to obtain a more accurate estimation
of the expected total cost. The following subsections describe in more detail
each step of our approach.
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Algorithm 1 ILS-based Simheuristic (inputs, α, β, maxPackIter, Kmin,
Kmax, λ, T0, tmax)
1: initSol ← genInitSol(inputs, α, β, maxPackIter ) % Initial solution stage
2: baseSol ← initSol
3: bestSol ← baseSol
4: fastSimulation(baseSol) % Monte Carlo simulation
5: T ← T0
6: while (time ≤ tmax) do % ILS stage
7: k ← Kmin

8: while (k ≤ Kmax) do
9: newSol ← shaking(baseSol, k, α, β, maxPackIter) % BR heuristic

10: newSol ← localSearch(newSol)
11: if (detCost(newSol) < detCost(baseSol)) then
12: fastSimulation(newSol) % Monte Carlo simulation
13: if (stochCost(newSol) < stochCost(baseSol)) then
14: baseSol ← newSol
15: if (stochCost(newSol) < stochCost(bestSol)) then
16: bestSol ← newSol
17: insert(poolBestSol,bestSol)
18: end if
19: k ← Kmin

20: end if
21: else % SA-based acceptance criterion
22: temperature ← calcTemperature(detCost(newSol), detCost(baseSol), T)
23: if (U(0,1) ≤ temperature) then
24: baseSol ← newSol
25: k ← Kmin

26: else
27: k ← k + 1
28: end if
29: end if
30: T ← λT
31: end while
32: end while
33: for (sol ∈ poolBestSol) do % Refinement stage - Monte Carlo simulation
34: deepSimulation(sol)
35: if (stochCost(sol) < stochCost(bestSol)) then
36: bestSol ← sol
37: end if
38: end for
39: return bestSol
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4.1. Construction of the Initial Solution.
With the aim of generating an initial solution, we use a constructive

heuristic which employs biased randomisation techniques. As discussed in
Juan et al. (2013a) and Grasas et al. (2017), biased-randomised techniques
refer to the use of skewed probability distributions to induce an ‘oriented’
(non-uniform) random behaviour. This process permits turning a determin-
istic heuristic into a probabilistic algorithm, while still preserving the logic
behind the heuristic. In our approach, biased-randomised techniques are
applied on the routing and packing heuristics. For the routing component,
we use the modified version of the well-known savings heuristic described in
(Juan et al., 2011b). As for solving the packing, we use the biased-randomised
version of the Best-Fit heuristic described in Dominguez et al. (2016a).

The classical savings heuristic (Clarke and Wright, 1964) starts by gen-
erating an initial dummy solution. This dummy solution consists of a return
trip from the depot to each customer, using as many vehicles as the number
of customers in the problem. Next, we compute the savings associated with
each edge, i.e., the cost reduction of including an edge connecting two cus-
tomers in one route instead of visiting them in two separate routes. These
savings are then sorted in descending order. At this point, an iterative process
is initiated. In each iteration, the elements in the savings list are rearranged
by applying a biased-randomised process, so edges associated with higher
savings are more likely to be ranked at the top of the list. This process al-
lows edges to be selected in a different order at each iteration of the process,
while still preserving the flavour of the original heuristic. In our case, a geo-
metric probability distribution, driven by a single parameter α (0 < α < 1),
is used to induce this skewed behaviour. The value for this parameter was
set after a quick tuning process over a random sample of deterministic 2L-
VRP benchmark instances, establishing a good performance whenever α falls
between (0.3, 0.4) (i.e., any random value inside this interval will generate
similar results). Once the savings list is computed, the algorithm starts a
route-merging process until the list is empty. At each iteration, the edge at
the top of the list is selected. This edge connects two routes, which will be
merged if: (i) there is enough weight capacity in the vehicle to carry all items
from both routes; (ii) there is enough available surface to load all items from
both routes; and (iii) there exists a feasible packing for all items such that
they can be conveniently loaded without overlapping.

In order to evaluate packing feasibility, a biased-randomised version of the
Best-Fit heuristic (Burke et al., 2004) is employed. This is a constructive and
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deterministic procedure that selects the next item (rectangle) to pack in the
vehicle based on bottom-left and ‘best fit’ criteria, i.e., among the available
items, it always chooses the one that offers the ‘best fit’ when positioned at
the bottom-left of the lowest available space. This deterministic heuristic is
transformed into a biased-randomised procedure by assigning probabilities
to the different items, so that the better the fit the higher its probability
of being chosen. Again, a geometric distribution is introduced to skew the
selection, controlled by a single parameter β (0 < β < 1). Following a tuning
process similar to the one used for the routing process, a good performance
was observed when β fell in the range (0.06, 0.23). Thus, the value of β
was established to be a random number within this interval. The biased-
randomised version of the Best-Fit heuristic is encapsulated within a multi-
start process. This allows to run the biased-randomised heuristic several
times, thus increasing our chances of finding a feasible packing solution.
This process is controlled by the parameter maxPackIter, which is set to
be proportional to the instance size. This multi-start process is combined
with the use of a fast-access memory-based method (a cache based on a
hash map data structure) to speed up the method. We first check if the
algorithm has already computed a feasible packing solution for the same
configuration (i.e., same combination of customers). If a feasible solution is
already known, routes are merged without launching the process. Otherwise,
the biased-randomised Best-Fit procedure is started, updating the packing
cache memory whenever a feasible solution is found. In both cases, the
packing process is stopped, deeming the route merging as feasible, and the
route construction resumes.

Note that, while other approaches propose a two-stage method – one for
solving the packing problem and another for solving the routing component –,
our approach integrates the packing problem as part of the route construction
method. This way, we can guarantee the feasibility of all routes, as we
explicitly take into account the loading constraints during the construction
phase.

4.2. SimILS Main Stage.

The second phase of our approach combines an ILS framework with sim-
ulation to assess the behaviour of obtained solutions in stochastic scenarios.
ILS is a relatively simple methodology that sequentially applies a diversifica-
tion method (shaking) and local search around the shaken solution (Lourenço
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et al., 2010). The process is repeated until the stopping criterion is met, nor-
mally based on maximum execution time (tmax) or number of iterations.
Algorithm 1 outlines the main steps of our approach. We start the process
by perturbing the current solution (step 9). This process is dependent on the
value of k, representing the degree of destruction to be applied in the shaking
phase. This value is updated between Kmin and Kmax in a VNS fashion, i.e.,
it is reset whenever a best solution is found (steps 7, 19 and 25) and increased
when the algorithm fails to improve the current solution (step 27). During
the shaking process, k adjacent routes are selected at random from the cur-
rent solution, and their corresponding customers are unassigned. Next, in
order to complete this partial solution, we apply the constructive biased-
randomised versions of the savings and Best-Fit heuristics used to obtain
the initial solution. In this process, biased randomisation prevents the same
solution from being obtained at every iteration. At the same time, using the
same biased-randomised procedures ensures the shaken solution is not far
from the original solution, even for high values of k. This characteristic is
desirable, given the empirical principle by which good solutions tend to be
clustered in the solution space.

Following the shaking process, the algorithm starts a local search around
the perturbed solution. This stage consists of two steps. First, a traditional
2-opt move is used to explore neighbouring solutions. This operator is ap-
plied to each route until it cannot be further improved, before moving to
the next route. Notice that, since only intra-route movements are evalu-
ated, we do not need to check the packing feasibility of the new sequence.
Only in the sequential versions of the 2L-VRP, feasibility might be altered
by intra-route moves. In the second step, once the solution cannot be fur-
ther improved with the 2-opt operator, memory-based techniques are used
to achieve a faster convergence. This mechanism is implemented using a
hash map data structure allowing quick access to its elements. As in the
packing case, previously-computed routes and packing plans for a given set
of customers are stored in this fast-access cache memory. In this case, we
keep in memory the best solution found so far for a specific set of customers
to be visited. If the obtained solution contains the same set of visits with a
higher cost, the route stored in the cache memory is retrieved and the current
solution is updated. Otherwise, we add (or update) the route to the cache
memory for subsequent iterations.

As mentioned in Section 1, carriers often have to deal with unforeseen
costs related to overtime and associated expenses, e.g., due to longer-than-
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expected travel times. These additional costs are modelled in our problem by
means of a non-smooth objective function given by Equations (11) and (12).
In these situations, a solution less sensitive to deviations from the original
plan is desirable. So far, the computed solution responds to the deterministic
2L-VRP and does not take into account these potential deviations. In order
to deal with the stochastic nature of the proposed problem, we include two
simulation processes in our algorithm. In the first case, we run a short MCS
accounting for travel time variability whenever the deterministic cost of the
base solution is improved (step 12). If the new solution is also able to improve
the stochastic cost of the base solution, the latter is updated (step 14). In
the same way, if the stochastic cost of the new solution improves the cost
of the best solution found so far, the latter is updated (step 16) and added
to the pool of elite solutions (step 17). By limiting the size of this pool, we
ensure we only keep track of the ‘elite’ solutions as the algorithm evolves.
Notice that the MCS does not only provides estimates to the expected cost
associated with the solutions generated by the approach, but it also reports
feedback to the stochastic search process. Indeed, the selection of the current
base and best solutions is driven by the results of the simulation. In order
to further diversify the search, the algorithm might occasionally accept non-
improving solutions following an acceptance criterion based on simulated
annealing (step 21), with decaying probability regulated with a temperature
parameter (T ) adjusted at each iteration (step 30).

Once the algorithm is finished, a longer MCS is launched to better assess
the elite solutions in the pool (step 34) before reporting the final results.
Since the number of generated solutions during the search can be large and
the simulation process is time-consuming, we limit the number of MCS it-
erations to be executed. For our approach, the number of iterations for the
exploratory and intensive MCS stages were set to 1,000 and 50,000, respec-
tively.

In both simulation processes, the delay times between any two customers,
Dij, are modelled using a Log-Normal probability distribution. As dis-
cussed by Juan et al. (2011a), the Log-Normal distribution is quite conve-
nient to model positive random variables such as this one. Since we defined
Tij = tij + Dij, the minimum travel time tij is considered as a lower bound
for the random time Tij requested to travel from customer i to customer
j. In our experiments, we have set the LogNormal parameters as follows:
location parameter µ = 0, and scale parameter σ = 0.75. An important
advantage of our approach is its relative simplicity: our method uses few
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parameters, significantly reducing its sensitivity to the particular character-
istics of a problem instance.In fact, only parameters maxPackIter, Kmin,
Kmax, and execution time (tmax), are adjusted according to the instance size,
while other parameters remain fixed. Moreover, all values were established
after a quick and simple tuning process, in which different combinations of
values were tested for a random sample of instances.

5. Computational Experiments

The proposed algorithm was implemented using the Java programming
language. All experiments were run in a standard computer with an Intel
Core i7 processor at 2.9 GHz and 8 GB RAM. The algorithm was executed
on the Eclipse platform for Java over OS X 10.11. The classical 2L-VRP
benchmark set proposed by Iori et al. (2007) and Gendreau et al. (2008)
was used in the experimentation. This set consists of 180 instances, divided
in 5 classes with 36 instances each. The instances are identified following
the nomenclature Exxx-yyyz, where xxx is the total number of customers,
yyy is the configuration of the instance, and z identifies the class of the
instance – see Toth and Vigo (2014) for the details of each configuration
and its notation. Among these classes, instances in class 1 correspond to
a more simplified version of the problem, where all customers demand one
single item of dimensions 1× 1. Therefore, the packing influence is relatively
limited during the route construction and this class has not as much interest
as the remaining ones.

Thus, we extended all deterministic benchmark instances in classes 2 to
5 to the stochastic case in order to assess our methodology. As mentioned in
Section 4, a Log-Normal distribution was selected to model the random delay
in travel time between each pair of customers, using the original deterministic
value provided in each instance as the minimum travel time required in an
ideal scenario without uncertainty. With this extension, it is possible to
account for the significant variability in travel times present in real systems
– including also potential delays in service times if these are considered as
part of the travel times. For our experiments, the remaining parameters were
set as described in Section 4 and the algorithm’s execution time was adjusted
to be proportional to the instance size. Tables 1 to 4 present the results for
all the stochastic instances.

These stochastic instances include a time threshold (τ) for each route,
which is adjusted for every instance according to the average length of routes
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in the best-known solution for the deterministic version. For each instance,
the associated threshold value (τ) is also reported in each table. As described
in Section 3, companies often need to deal with unexpected costs due to
longer-than-expected working hours. This characteristic was captured by
modifying the standard objective function into a non-smooth expression that
penalises excess time above a given threshold, as given in Equations (12)
and (11). For our experiments, and in order to obtain numerical results but
without losing generality, the overtime penalty parameter ρ was set to 1.25,
while the parameter γ was set to 40.

First, we validate our approach on the original 2L-VRP instances, that is,
without considering stochastic travel times or overtime penalties. We report
in Tables 1 to 4 our obtained best solution (OBS [2]) for each determinis-
tic instance, as well as the best known solution in the literature (BKS [1])
and the corresponding gap (∆(%) [2-1]). In particular, we measure the per-
formance of our algorithm using the current best solutions reported by Wei
et al. (2018b). We observe that our method is able to match or remain very
close to the best-known solutions for each deterministic instance, with aver-
age gaps around 1%. Despite aimed at solving stochastic instances, results
show that our algorithm is comparable to other state-of-the-art approaches
for the deterministic 2L-VRP.

The second part of the tables report the results obtained for the 2L-
SVRP stochastic instances considering random travel times and overtime
penalties. These figures correspond to the best found solution over 5 in-
dependent executions of our algorithm per instance, allowing a maximum
running time of 1,000 seconds per run. In all cases, the average costs in the
deterministic scenario for the best deterministic (OBDdet [3]) and stochas-
tic (OBSdet [4]) solutions are presented. Likewise, we include the average
values in the stochastic case for the best deterministic (OBDstoch [5]) and
stochastic (OBSstoch [6]) solutions. The average excess time incurred by the
best stochastic solution in the stochastic scenario is also provided in the table
(∆tOBS [7]). Finally, the two last columns present the computational time
required to reach the deterministic (CPUOBD [8]) and stochastic (CPUOBS

[8]) solutions.
Our results show that the solutions provided by our approach for the 2L-

SVRP clearly outperform the best-known solutions for the deterministic 2L-
VRP when these are considered as solutions of the 2L-SVRP. In other words,
near-optimal solutions for the deterministic version of the problem might be
sub-optimal solutions for the stochastic version. Hence, the importance of
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integrating simulation methods when dealing with stochastic optimization
problems. As expected, considering the stochastic nature of some variables
during the searching process yields worse deterministic solutions – an average
gap of 1.94%, obtaining a maximum average gap of 2.24% for class 3, when
compared to the deterministic approach. However, these same solutions show
a better performance when variability is considered, with an average gap of
−2.91%, obtaining a maximum average gap of −3.29% for class 3, when
compared to the best deterministic solutions applied in stochastic instances.
Furthermore, this behaviour is consistent across instances of different classes,
as shown in Figure 2. For some instances, we observe that using our approach
may yield savings of up to 10% when these random variable travel times are
considered (Figure 2b).

All in all, the results confirm that not accounting for variability during
the search process may have a significant impact on the quality of the fi-
nal solution. For instance, the direct application of deterministic solutions
might provide a slightly lower cost in ideal situations without uncertainty
(Figure 2a), but will cause a much higher cost in a scenario under uncer-
tainty (Figure 2b). This is due to the penalty cost considered for overtime
routes, which is a reasonable assumption in most real-life situations.

6. Conclusions

In this paper, we present a simheuristic algorithm for solving a stochas-
tic variant of the two-dimensional vehicle routing problem (2L-VRP). This
problem can be found in many real-life applications, like the one that mo-
tivated this work. In many cases, companies have to deal with uncertainty
in some aspects of the problem, such as stochastic travel or service times,
which typically derive in overtime penalty costs. However, this aspect has
seldom been addressed in the 2L-VRP literature yet. Our simheuristic ap-
proach combines an iterated local search framework with biased-randomised
versions of classical routing and packing heuristics. Both heuristics are in-
tegrated in the routing-construction method, ensuring packing feasibility for
all routes during the construction process, contrary to more traditional two-
stage approaches. In order to deal with the stochastic nature of the pro-
posed problem, Monte Carlo simulation is integrated at two stages of the
metaheuristic framework. This allows us to account for uncertainty in travel
times during the search. The algorithm is enhanced by fast-access memory-
based techniques, which help to reduce computational times. To test our

24



(a) Deterministic scenarios

(b) Stochastic scenarios

Figure 2: Gap (%) distribution between the best stochastic and best deterministic solution,
in equivalent (a) deterministic and (b) stochastic instances of the 2L-VRP.
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methodology, stochastic instances of the 2L-VRP have been generated by
modifying the ones contained in well-known deterministic benchmark sets.
Random delays in base travel times are modelled using Log-Normal prob-
ability distributions. The numerical results show that our methodology is
capable of generating much better solutions for scenarios under uncertainty,
while still being competitive with state-of-the-art approaches for the classi-
cal deterministic scenarios without uncertainty. Moreover, our approach is
able to perform consistently across all tested instances. As future research,
we plan to extend our methodology to tackle other stochastic 2L-VRP vari-
ants (e.g., with sequential loading or backhauls). Indeed, the use of other
metaheuristic frameworks and their integration with simulation techniques
seems quite promising to us. Therefore, it constitutes an interesting research
line to pursue for stochastic 2L-VRP variants as well as similar stochastic
optimization problems, where more traditional methods such as stochastic
programming might be of limited employability due to the complex nature of
the underlying optimization problem and the large-size of realistic instances.
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